Skip to main content

Abstract

The leaf apoplast plays an important physiological role in nutrient transport and storage, however, its significance for the iron (Fe) nutrition is not sufficiently understood. There are only few studies in the literature primarily on the mechanism of Fe absorption by leaf cells; even less information is available on the mobility and binding forms of Fe in the leaf apoplast. This review summarizes current knowledge (sometimes very controversial) of the role of leaf apoplastic features (e.g. pH and organic acids) in modulating both the physiological availability of apoplastic Fe and reduction-mediated Fe uptake into the mesophyll cells. The conclusions drawn from our own studies contrast with the hypothesis of Fe inactivation in leaves induced by high bicarbonate or/and nitrate supply to roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abadía, J., López-Millàn, A.F., Rombolà, A. and Abadía, A. (2002). Organic acids and Fe deficiency: a review. Plant Soil, 241, 75–86.

    Article  Google Scholar 

  • Becker, R., Grün, M. and Scholz, G. (1992). Nicotianamine and the distribution of iron into the apoplasm and sympalsm of tomato (Lycopersicon esculentum Mill.). I. Determination of the apoplasmic and symplasmic iron pools in roots and leaves of the cultivar Bonner Beste and its nicotianamine-less mutant chloronerva. Planta, 187, 48–52.

    Article  CAS  Google Scholar 

  • Bergmann, W. (1992). Nutritional disorders of plants - Development, visual and analytical diagnosis (p. 233). Jena: Gustav Fisher Verlag.

    Google Scholar 

  • Bialczyk, J. and Lechowski, Z. (1995). Chemical composition of xylem sap of tomato grown on bicarbonate containing medium. J. Plant Nutr., 18, 2005–2021.

    CAS  Google Scholar 

  • Bienfait, H.F. and Scheffers, M.R. (1992). Some properties of ferric citrate relevant to the iron nutrition of plants. Plant Soil, 143, 141–144.

    Article  CAS  Google Scholar 

  • Bienfait, H.F., van den Briel, W. and Mesland-Mul, N.T. (1985). Free space iron pools in roots. Generation and mobilization. Plant Physiol., 78, 596–600.

    PubMed  CAS  Google Scholar 

  • Brown, J.C., Cathey, H.M., Bennett, J.H. and Thimijan, R.W. (1979a). Effect of light quality and temperature on Fe3+ reduction, and chlorophyll concentration in plants. Agron. J., 71, 1015–1021.

    Article  CAS  Google Scholar 

  • Brown, J.C., Foy, C.D., Bennett, J.H. and Christiansen, M.N. (1979b). Two light sources differentially affected ferric iron reduction and growth of cotton. Plant Physiol., 63, 692–695.

    CAS  Google Scholar 

  • Brüggemann, W., Maas-Kantel, K. and Moog, P.R. (1993). Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta, 190, 151–155.

    Article  Google Scholar 

  • Cataldo, D.A., McFadden, K.M., Garland, T.R. and Wildung, R.E. (1988). Organic constituents and complaexation of nickel (II), iron (III), cadmium (II), and plutonium (IV) in soybean xylem exudates. Plant Physiol., 50, 208–213.

    Google Scholar 

  • Connolly, E.L., Campbell, N.H., Grotz, N., Prichard, C.L. and Guerinot, M.L. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol., 133, 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, E.L., Fett, J.P. and Guerinot, M.L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14, 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • Dannel, F., Pfeffer, H. and Marschner, H. (1995). Isolation of apoplasmic fluid from sunflower leaves and its use for studies on influence of nitrogen supply on apoplasmic pH. J. Plant Physiol., 146, 273–278.

    CAS  Google Scholar 

  • de la Guardia, M.D. and Alcántara, E. (1996). Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron-deficiency and leaf age. J. Exp. Bot., 47, 669–675.

    Article  Google Scholar 

  • Fernandez ,V., Ebert, G. and Winkelmann. G. (2005). The use of microbial siderophores for foliar iron application studies. Plant Soil, 272, 245–252.

    Article  CAS  Google Scholar 

  • Fry, S.C., Miller, J.G. and Dumville, J.C. (2002). A proposed role for copper ions in cell wall loosening. Plant Soil, 247, 57–67.

    Article  CAS  Google Scholar 

  • González-Vallejo, E.B., González-Reyes, J.A., Abadía, A., López-Millán, A.F., Yunta, F., Lucena, J.J. and Abadía, J. (1999). Reduction of ferric chelates by leaf plasma membrane preparations from Fe-deficient and Fe-sufficient sugar beet. Austr. J. Plant Physiol., 26, 601–611.

    Article  Google Scholar 

  • González-Vallejo, E.B., Morales, F., Cistué, L., Abadía, A. and Abadía, J. (2000). Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol., 122, 1–8.

    Article  Google Scholar 

  • Häussling, M., Römheld, V. and Marschner, H. (1985). Beziehungen zwischen Chlorosegrad, Eisengehalten und Blattwachstum von Weinreben auf verschiedenen Standorten. Vitis, 24, 158–168.

    Google Scholar 

  • Hoffmann, B. and Kosegarten, H. (1995). FITC-dextran for measuring apoplast pH and apoplastic pH gradients between various cell types in sunflower leaves. Physiol. Plan., 95, 327–335.

    Article  CAS  Google Scholar 

  • Kosegarten, H.U., Hoffmann, B. and Mengel, K. (1999). Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiol., 121, 1069–1079.

    Article  CAS  PubMed  Google Scholar 

  • Kosegarten, H., Hoffmann, B. and Mengel, K. (2001). The paramount influence of nitrate in increasing apoplastic pH of young sunflower leaf to induce Fe deficiency chlorosis, and the re-greening effect brought about acid foliar sprays. J. Plant Nutr. Soil Sci., 164, 155–163.

    Article  CAS  Google Scholar 

  • Krizek, D.T., Bennett, J.H., Brown, J.C., Zaharieva, T. and Norris, K.H. (1982). Photochemical reduction of iron. I. Light reactions. J. Plant Nutr., 5, 323–333.

    CAS  Google Scholar 

  • Larbi, A., Morales, F., López-Millán, A.F., Gogorcena, Y., Abadía, A., Moog, P.R. and Abadía, J. (2001). Technical advance: reduction of Fe(III)-chelates by mesophyll leaf discs of sugar beet. Multi-component origin and effects of Fe deficiency. Plant Cell Physiol., 42, 94–105.

    Article  PubMed  CAS  Google Scholar 

  • López-Millán, A.F., Morales, F., Abadía, A. and Abadía, J. (2000). Effects of iron nutrition on the composition of the leaf apoplastic fluid and xylem sap in sugar beet: implication for iron and carbon transport. Plant Physiol., 124, 873–884.

    Article  PubMed  Google Scholar 

  • López-Millàn, A.F., Morales, F., Abadía, A. and Abadía, J. (2001). Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J. Exp. Bot., 52, 1489–1498.

    Article  PubMed  Google Scholar 

  • Meharg, A.A. and Blatt, M.R. (1995). NO3 - transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J. Membr. Biol., 145, 49–66.

    PubMed  CAS  Google Scholar 

  • Mengel, K. (1994). Iron availability in plant tissues - iron chlorosis on calcareous soils. Plant Soil, 165, 275–283.

    Article  CAS  Google Scholar 

  • Mengel, K., Plänker, R. and Hoffmann, B. (1994). Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). J. Plant Nutr., 17, 1053–1065.

    CAS  Google Scholar 

  • Moog, P.R. and Brüggemann, W. (1994). Iron reductase systems on the plant plasma membrane - a review. Plant Soil, 165, 241–260.

    Article  CAS  Google Scholar 

  • Morales, F., Grasa, R., Abadía, A. and Abadía, J. (1998). Iron chlorosis paradox in fruit trees. J. Plant Nutr., 21, 815–825.

    CAS  Google Scholar 

  • Mühling, K. H. and Läuchli, A. (2001). Influence of chemical form and concentration of nitrogen on apoplastic pH of leaves. J. Plant Nutr., 24, 399–411.

    Article  Google Scholar 

  • Nikolic, M. and Römheld, V. (1999). Mechanism of Fe uptake by the leaf symplast: Is Fe inactivation in leaf a cause of Fe deficiency chlorosis? Plant Soil, 215, 229–237.

    Article  CAS  Google Scholar 

  • Nikolic, M. and Römheld, V. (2001). The role of the leaf apoplast in iron nutrition of plants. In W. J. Horst et al. (Eds.), Plant nutrition - Food security and sustainability of agro-ecosystems (pp. 274–275). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Nikolic, M. and Römheld, V. (2002). Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant Soil, 241, 67–74.

    Article  CAS  Google Scholar 

  • Nikolic, M. and Römheld, V. (2003). Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol., 132, 1303–1314.

    Article  PubMed  CAS  Google Scholar 

  • Nikolic, M., Cesco, S., Römheld, V., Pinton, R. and Varanini, Z. (2003). Uptake of iron (59Fe) complexed to water-extractable humic substances by sunflower leaves. J. Plant Nutr., 26, 2243–2252.

    Article  CAS  Google Scholar 

  • Nikolic, M., Römheld, V. and Merkt, N. (2000). Effect of bicarbonate on uptake and translocation of 59Fe in grapevine rootstocks differing in their resistance to Fe deficiency chlorosis. Vitis, 39, 145–149.

    CAS  Google Scholar 

  • Peiter, E., Yan, F. and Schubert, S. (2001). Lime-induced growth depression in Lupinus species: Are soil pH and bicarbonate involved? J. Plant Nutr. Soil Sci., 164, 165–172.

    Article  CAS  Google Scholar 

  • Pich, A. and Scholz, G. (1991). Nicotinamine and the distribution of iron into apoplast and symplast of tomato (Lycopersicon esculentum Mill.) II. Uptake of iron by protoplasts from the variety Bonner Beste and its nicotianamine-less mutant chloronerva and the compratmentation of iron in leaves. J. Exp. Bot., 42, 1517–1523.

    Article  CAS  Google Scholar 

  • Robinson, N.J., Sadjuga, J. and Groom, Q.J. (1997). The froh gene family from Arabidopsis thaliana: Putative iron-chelate reductases. Plant Soil, 196, 245–248.

    Article  CAS  Google Scholar 

  • Rombolà, A.D., Brüggemann, W., Tagliavini, M., Marangoni, B. and Moog, P. (2000). Iron source affects iron reduction and re-greening of kiwifruit (Actinidia deliciosa) leaves. J. Plant Nutr., 23, 1751–1765.

    Article  Google Scholar 

  • Römheld, V. and Marschner, H. (1986). Mobilization of iron in the rhizosphare of different plant species. In B. Tinker and A. Läuchli (Eds.), Advances in plant nutrition, Vol. 2 (pp. 155–192). New York: Praeger Publishers.

    Google Scholar 

  • Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J. Plant Nutr., 23, 1629–1643.

    Google Scholar 

  • Sattelmacher, B. (2001). The apoplast and its significance for plant mineral nutrition. New Phytol., 149, 167–192.

    Article  CAS  Google Scholar 

  • Schmidt, W. (1999). Mechanism and regulation of reduction-based iron uptake in plants. New Phytol., 141, 1–26.

    Article  CAS  Google Scholar 

  • Schmidt, W. (2003). Iron homeostasis in plants: sensing and signaling pathways. J. Plant Nutr., 26, 2211–2230

    Article  CAS  Google Scholar 

  • Tagliavini, M., Abadía, J., Rombolà, A.D., Abadía, A., Tsipouridis, C. and Marangoni, B. (2000). Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J. Plant Nutr., 23, 2007–2022.

    CAS  Google Scholar 

  • Tagliavini, M., Scudellari, D., Marangoni, B. and Toselli, M. (1995). Acid-spray regreening of kiwifruit leaves affected by lime-induced chlorosis. In J. Abadía (Ed.), Iron nutrition in soils and plants (pp. 389–396). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tiffin, L.O. (1966). Iron translocation. II. Citrate/iron ratios in stem exudates. Plant Physiol., 41, 515–518.

    PubMed  CAS  Google Scholar 

  • Toulon, V., Sentenac, H., Thibaud, J.-B., Davidian, J.-C., Moulineau, C. and Gringon, C. (1992). Role of apoplast acidification by the H+ pump: effect on the sensitivity to pH and CO2 of iron reduction by roots of Brassica napus L. Planta, 186, 212–218.

    Article  CAS  Google Scholar 

  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.-F. and Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 14, 1223–1233.

    Article  PubMed  CAS  Google Scholar 

  • Waters, B.M., Blevins, D.G. and Eide, D.J. (2002). Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol., 129, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, L.H. and Zimmermann, U. (2004). Bicarbonate-induced alkalinization of the xylem sap in intact maize seedlings as measured in situ with a novel xylem pH probe. Plant Physiol., 136, 3469–3477.

    Article  PubMed  CAS  Google Scholar 

  • White, M.C., Decker, A.M. and Chaney, R.L. (1981). Metal complexation in xylem fluid: I. Chemical composition of tomato and soybean stem exudate. Plant Physiol., 67, 292–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nikolic, M., Römheld, V. (2007). The dynamics of iron in the leaf apoplast. In: Sattelmacher, B., Horst, W.J. (eds) The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5843-1_26

Download citation

Publish with us

Policies and ethics