Skip to main content

Constructibility and Class Forcing

  • Chapter
  • First Online:
Handbook of Set Theory

Abstract

In this article we discuss the basic theory and applications of class forcing, with an emphasis on three problems posed by Solovay which can be resolved using it. As class forcing, unlike traditional set forcing, does not in general preserve \(\mathop {\rm ZFC}\) , we first isolate the first-order property of tameness, necessary and sufficient for this preservation. After mentioning four basic examples, we discuss the question of the generic existence for class forcing before turning to the most important technique in the subject, the technique of Jensen coding. Armed with these ideas we then proceed to describe the solutions to the Solovay problems. We next discuss generic saturation, a concept which helps to explain the special role of 0# in this theory. We end by briefly describing some other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aaron Beller, Ronald B. Jensen, and Philip D. Welch. Coding the Universe, volume 47 of London Mathematical Society Lecture Note Series. Cambridge University Press, London, 1982.

    MATH  Google Scholar 

  2. René David. A very absolute \(\Pi^{1}_{2}\) -singleton. Annals of Mathematical Logic, 23:101–120, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  3. René David. A functorial \(\Pi^{1}_{2}\) -singleton. Advances in Mathematics, 74:258–268, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  4. Keith J. Devlin and Ronald B. Jensen. Marginalia to a theorem of Silver. In Logic Conferences, Kiel 1974, volume 499 of Lecture Notes in Mathematics, pages 115–142. Springer, Berlin, 1975.

    Google Scholar 

  5. Sy D. Friedman. Fine Structure and Class Forcing, volume 3 of Logic and Its Applications. de Gruyter, Berlin, 2000.

    MATH  Google Scholar 

  6. Sy D. Friedman and Boban Veličković. Δ1-definability. Annals of Pure and Applied Logic, 89:93–99, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. Sy D. Friedman and W. Hugh Woodin. \(\delta^{1}_{2}\) without sharps. Proceedings of the American Mathematical Society, 124:2211–2213, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  8. Leo A. Harrington and Alexander Kechris. \(\Pi^{1}_{2}\) -singletons and 0#. Fundamenta Mathematicae, 95:167–171, 1977.

    MATH  MathSciNet  Google Scholar 

  9. Ronald B. Jensen and Robert M. Solovay. Some applications of almost disjoint sets. In Yehoshua Bar-Hillel, editor, Mathematical Logic and Foundations of Set Theory, pages 84–104. North-Holland, Amsterdam, 1970.

    Google Scholar 

  10. Alexander Kechris and W. Hugh Woodin. On thin \(\Pi^{1}_{2}\) sets. Preprint, 1983.

    Google Scholar 

  11. Donald A. Martin. Descriptive set theory: Projective sets. In K. Jon Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages 783–815. North-Holland, Amsterdam, 1977.

    Chapter  Google Scholar 

  12. Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations of Mathematics. Springer, Berlin, 1980.

    MATH  Google Scholar 

  13. Itay Neeman. Optimal proofs of determinacy. The Bulletin of Symbolic Logic, 1:327–339, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. Jeffrey B. Paris. Patterns of indiscernibles. Bulletin of the London Mathematical Society, 6:183–188, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  15. Joseph R. Shoenfield. The problem of predicativity. In Yehoshua Bar-Hillel, E.I.J. Poznanski, Michael O. Rabin, and Abraham Robinson, editors, Essays on the Foundations of Mathematics, pages 132–139. Magnes Press, Jerusalem, 1961.

    Google Scholar 

  16. Jack H. Silver. Some applications of model theory in set theory. Annals of Mathematical Logic, 3:45–110, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  17. Robert M. Solovay. A nonconstructible \(\Delta^{1}_{3}\) set of integers. Transactions of the American Mathematical Society, 127:50–75, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  18. Robert M. Solovay. On the cardinality of \(\Sigma^{1}_{2}\) sets of reals. In Jack J. Bulloff, Samuel W. Hahn, and Thomas C. Holyoke, editors, Foundations of Mathematics, pages 58–73. Springer, Berlin, 1969.

    Google Scholar 

  19. Maurice C. Stanley. A non-generic real incompatible with 0#. Annals of Pure and Applied Logic, 85:157–192, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Hugh Woodin. Supercompact cardinals, sets of reals and weakly homogeneous trees. Proceedings of the National Academy of Sciences, 85:6587–6591, 1998.

    Article  MathSciNet  Google Scholar 

  21. Andrzej M. Zarach. Forcing with proper classes. Fundamenta Mathematicae, 81:1–27, 1973.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sy D. Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Friedman, S.D. (2010). Constructibility and Class Forcing. In: Foreman, M., Kanamori, A. (eds) Handbook of Set Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5764-9_9

Download citation

Publish with us

Policies and ethics