Skip to main content

Molecular tailoring and boosting of bioactive secondary metabolites in medicinal plants

  • Chapter
Book cover Improvement of Crop Plants for Industrial End Uses

Abstract

Although the production of most of the current medicines is based on chemical synthesis, more than 25% of the current prescribed drugs contains at least one active ingredient of plant origin (Kaufman et al 1999). Examples of important plant-derived pharmaceuticals include the antitumoral taxol and vinblastine, the antimalarial drug quinine and artemisinin, the analgesical morphine and codeine. In addition, it has been estimated that more than 80% of the world’s population in developing countries depends primarily on herbal medicine for basic healthcare needs (Vines 2004). There is also a revival of traditional medicine in developed countries and an increase in the use of herbal remedies. The world market of herbal medicines, including herbal and raw material, has been estimated to have an annual growth rate between 5–15%. Total global herbal drug market is estimated as US $ 62 billion and it is expected to grow to US $ 5 trillion by the year 2050 (Joshi et al. 2004). At same time, there is a growing concern on loss of genetic diversity since about 75% of the 50,000 different medicinal plant species in use are collected from the wild (Edwards 2004). Moreover, to rely solely on wild spontaneous plants as a production system can be extremely dangerous, as shown recently by severe shortage problems of the antimalarial artemisinin (Scheindlin 2005). Additionally, bioactive plant compounds are produced generally at very low amount and, often, it is not economically convenient to extract them from natural sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdin MZ, Israr M, Rehman RU, Jain SK (2003) Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med 69: 289–299

    PubMed  CAS  Google Scholar 

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of Lphenylalanine ammonia-Lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098–3109

    PubMed  CAS  Google Scholar 

  • Allen RS, Milligate AG, Chitty IA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in oppium poppy. Nat Biotechnology 22: 1559–1566

    CAS  Google Scholar 

  • Ayora-Talavera T, Chappell J, Lozoya-Gloria E, Loyola-Vargas VM (2002) Overexpression in Catharanthus roseus hairy roots of a truncated hamster 3- hydroxy-3methylglutaryl-CoA reductase gene. Appl Biochem Biotechnol 97: 135–145

    PubMed  CAS  Google Scholar 

  • Bajaj YPS (1999) Transgenic Medicinal Plants. Series: Biotechnology in Agriculture and Forestry, vol 45 Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Barkovich R, Liao JC (2001) Metabolic Engineering of Isoprenoids. Metab Eng 1: 27–39

    Google Scholar 

  • Berlin J, Rugenhagen C, Dietze P, Fecker LF, Goddijin OJM, Hoge JHC (1993) Increased production of serotonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA from Catharanthus roseus. Transgenic Res 2: 336–344

    CAS  Google Scholar 

  • Bock A, Wanner G, Zenk M (2002) Immunocytological localization of two enzymes involved in berberine biosynthesis. Planta 216: 57–63

    PubMed  CAS  Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotech 22: 311–318

    CAS  Google Scholar 

  • Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, Posthumus MA, Schmidt CO, De Kraker JW, Konig WA, Franssen MC (1999) Amorpha- 4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52: 843–854

    PubMed  CAS  Google Scholar 

  • Brandle J, Richman A, Swanson AK, Chapman BP (2002) Leaf ESTs from Stevia rebaudiana: a resource for gene discovery in diterpene synthesis. Plant Mol Biol 50: 613–622

    PubMed  CAS  Google Scholar 

  • Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124: 507–514

    PubMed  CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7: 202–209

    PubMed  CAS  Google Scholar 

  • Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. In: Proc Natl Acad Sci USA 96, 12929–12934

    PubMed  CAS  Google Scholar 

  • Burlat V, Oudin A, Courtois M, Rideau M, St Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38: 131–141

    PubMed  CAS  Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, Van der Fits L, Pasquali G, Van der Heijden R, Harry J, Hoge C, Verpoorte R (1998) Effects of overexpression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205: 414–419

    PubMed  CAS  Google Scholar 

  • Chen DH, Liu CJ, Ye HC, Li GF, Liu BY, Meng YL, Chen XY (1999) Rimediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production. Plant Cell Tiss Org Cult 57: 157–162

    CAS  Google Scholar 

  • Chen DH, Ye HC, Li GF (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155: 179–185

    PubMed  CAS  Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyl transferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anabatine at the expense of nicotine. Plant Mol Biol 53: 87–105

    PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W and Jones R (eds) Biochemistry & Molecular Biology of Plants, American Society of Plant Physiologists, Rockville, Maryland, pp 1250–1318

    Google Scholar 

  • Croteau R, Davis E, Ringer K, Wildung M (2005) (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 92: 562–577

    PubMed  CAS  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5: 168–173

    PubMed  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4: 225–233

    PubMed  Google Scholar 

  • Debeaujon I, Peeters AJM, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853–872

    PubMed  CAS  Google Scholar 

  • De Jong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol and Bioengin 93: 212–224

    Google Scholar 

  • Diemer F, Caissard JC, Moja S, Chalchat JC, Jullien F (2004) Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiol Biochem 39: 603–614

    Google Scholar 

  • Docimo T, Sacco A, Dalpiaz F, De Tommasi N, Coraggio I (2005) Boosting the phenylpropanoid pathway in Nicotiana tabacum plants by over-expression of the Osmyb4 transcription factor. In: Proceedings of the XLIX Italian Society of Agricultural Genetics Annual Congress, Potenza, Italy, Poster Abstract - A.01 ISBN 88-900622-6-6

    Google Scholar 

  • Edwards R (2004) No remedy in sight for herbal ransack. New Sci 181: 10–11

    Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199–206

    PubMed  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 51: 29–61

    Google Scholar 

  • Frangne N, Eggmann T, Koblischke C, Weissenbock G, Martinoia E, Klein M (2002) Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-Binding Cassette-type mechanisms. Plant Physiol 128:726–733

    PubMed  CAS  Google Scholar 

  • Frick S, Chitty JA, Kramell R, Schmidt J, Allen RS, Larkin PJ, Kutchan TM (2004) Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res 13: 607–613

    PubMed  CAS  Google Scholar 

  • Gang DR, Wang J, Dudareva N, Nam KH, Simon JE, Lewinsohn E, Pichersky E (2001) An investigation of the storage and Biosynthesis of Phenylpropenes in Sweet Basil. Plant Physiol 125: 539–555

    PubMed  CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends in Pharm Sci 12: 563–569

    Google Scholar 

  • Geerlings A, Hallard D, Martinez-Caballero A, Lopes-Cardoso I, Van der Heijden R, Verpoorte R (1999) Alkaloid production by a Cinchona officinalis ‘Ledgeriana’ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 19: 191–196

    CAS  Google Scholar 

  • Glase V (1999) Billion dollar market blossoms as botanicals take root. Nat Biotechnol 17:17–18

    Google Scholar 

  • Goddijn OJ, Pennings EJ, van der Helm P, Schilperoort RA, Verpoorte R, Hoge JH (1995) Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid alkaloid production. Transgenic Res 4: 315–323

    PubMed  CAS  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16: 1812–1826

    PubMed  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laasko I, Seppanen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Zabeau M, Inzé D, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci US 100: 8595–8600

    CAS  Google Scholar 

  • Hashimoto T, Yamada Y (2003) New genes in alkaloid metabolism and transport. Curr Opin Biotech 14:163–168

    PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    PubMed  CAS  Google Scholar 

  • Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122: 28–38

    PubMed  CAS  Google Scholar 

  • Hughes EH, Hong S-B, Gibson SI, Sha nks JV, San K-Y (2004a) Metabolic engineering of the indole pathway in Catharanthus roseus hary roots and increased accumulation of tryptamine and serpentine. Metab Eng 6: 268–276

    CAS  Google Scholar 

  • Hughes EH, Hong S-B, Gison SI, Shanks JV, San K-Y (2004b) Expression of a feed-back resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid level. Biotechnol Bioeng 86: 718–27

    CAS  Google Scholar 

  • Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804

    PubMed  CAS  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP Binding Cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    PubMed  CAS  Google Scholar 

  • Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cells cDNA library for identification of clones involved in Taxol biosynthesis. Proc National Aca Sci USA, 101: 9149–9154

    CAS  Google Scholar 

  • Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny M, Bak S, Moler BL (2005) Metabolon formation and metabolic channeling in the biosinthesis of plant natural products. Curr Opin Plant Biol 8: 280–291

    PubMed  CAS  Google Scholar 

  • Joshi K, Chavan P, Warudel D, Patwardnan B (2004) Molecular markers in herbal drug technology. Current Science 2: 159–165

    Google Scholar 

  • Jung GY, Stephanopoulos G (2004) A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 304: 428–431

    PubMed  Google Scholar 

  • Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural Products from Plants. CRC Press, Boca Raton, USA

    Google Scholar 

  • Klayman DL (1985) Qinghasosu (artemisinin): An antimalarial drug from China. Science 228: 1049–1055

    PubMed  CAS  Google Scholar 

  • Krasnyanski S, May RS, Loskutov A, Ball TM, Sink KC (1999) Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and the preliminary studies on the essential oil profiles of single transgenic plants. Theor Appl Genet 99: 676–682

    CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8: 292–300

    PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA, 100: 4939–4944

    PubMed  CAS  Google Scholar 

  • Lucker J, Schwab W, van Hautum B, Blaas J, van der Plas LHW, Bouwmeester HJ, Verhoeven HA (2004) Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol 134: 510–519

    PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 98: 8915–8920

    PubMed  CAS  Google Scholar 

  • Mahmoud SS, Croteau R (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7: 366–373.

    PubMed  CAS  Google Scholar 

  • Mahmoud SS, Williams M, Croteau R (2004) Cosuppression of limonene-3- hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65: 547–554

    PubMed  CAS  Google Scholar 

  • Martin VJJ, Pitera DJ, Withers ST, Newman DJ, Jay D Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotech 21: 796–802

    CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15: 1689–1703

    PubMed  CAS  Google Scholar 

  • McCaskill D, Croteau R (1997) Prospects for the bioengineering of isoprenoid biosynthesis. Adv Biochem Engin/Biotech 55: 107–146

    CAS  Google Scholar 

  • McCaskill D, Croteau R (1998) Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotech 16: 349–355

    CAS  Google Scholar 

  • McKnight TD, Bergey DR, Burnett RJ, Nessler CL (1991) Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185: 148–152

    CAS  Google Scholar 

  • Meijer AH, Verpoorte R, Hoge JHC (1993) Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res 3: 145–164

    Google Scholar 

  • Moyano E, Fornale S, Palazon J, Cusido RM, Bagni N, Pinol MT (2002) Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry 59: 697–702

    PubMed  CAS  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16- OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44: 581–594

    PubMed  CAS  Google Scholar 

  • Noel JP, Austin MB, Bomati EK (2005) Structure-function relationship in plant phenylpropanoid biosynthesis. Curr Opin Plant Biol 8: 249–253

    PubMed  CAS  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) Production of decaffeinated coffee plants by genetic engineering. Nature 423: 823

    PubMed  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9: 433–440

    PubMed  CAS  Google Scholar 

  • Otani M, Shitan N, Sakai K, Martinoia E, Sato F, Yazaki K (2005) Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol 138: 1939–1946

    PubMed  CAS  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128: 696–706

    PubMed  CAS  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2003) Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Mol Biol 51: 153–164

    PubMed  CAS  Google Scholar 

  • Pichersky E, Gang DE (2000) Genetics and bioschemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5: 439–445

    PubMed  CAS  Google Scholar 

  • Pickersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: Nature’s Diversity and Ingenuity. Science 211: 808–811

    Google Scholar 

  • Purcell K (2006) Gates Foundation invests $ 42.6 Million in Malaria Drug Research. HerbalGram 69: 24–252

    Google Scholar 

  • Ralley L, Enfissi EMA, Misawa N, Schuch W, Branley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoids formation in higher plants. Plant J 39: 477–86

    PubMed  CAS  Google Scholar 

  • Richter U, Rothe G, Fabian AK, Rahfeld B, Drager B (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot 56: 645–652

    PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles- Diaz W, Van Montagu MC, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 2006 (in press)

    Google Scholar 

  • Rocha P, Stenzel O, Parr A, Walton N, Christou P, Drager B, Leech MJ (2002) Functional expression of tropinone reductase I (trf) and hyoscyamine-6b-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Sci 162:905–913

    CAS  Google Scholar 

  • Rothe G, Hachiya A, Yamada Y, Hashimoto T, Drager B (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54: 2065–2070

    PubMed  CAS  Google Scholar 

  • Sakai K, Shitan N, Sato F, Ueda K, Yazaki K (2002) Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot 53: 1879–1886

    PubMed  CAS  Google Scholar 

  • Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27: 37–48

    PubMed  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hackiya A, Tamura K, Chioi KB, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosyntheis. Proc Natl Acad Sci USA 98: 367–372

    PubMed  CAS  Google Scholar 

  • Scheindlin S (2005) Antimalarials: shortage and searches. Mol Interv 5(4): 201–206

    PubMed  Google Scholar 

  • Schoendorf A, Rithner CD, Williams RM, Croteau R (2001) Molecular cloning of a cytochrome P450 taxane 10 β -hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA 98: 1501–1506.

    PubMed  CAS  Google Scholar 

  • Schijlen EGWM, de Vos RCH, van Tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65: 2631–2648

    PubMed  CAS  Google Scholar 

  • Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA 100: 751–756

    PubMed  CAS  Google Scholar 

  • St Pierre B, De Luca V (1995) A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol 109: 131–139

    Google Scholar 

  • St Pierre B, Laflamme P, Alarco A-M, De Luca V (1998) The terminal O acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A dependent acyl transfer. Plant J 14: 703–713

    Google Scholar 

  • St Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11: 887–900

    Google Scholar 

  • Suzuki H, Koike Y, Murakoshi I, Saito K (1996) Subcellular localization of acyltransferases for quinolizidine alkaloid biosynthesis in Lupinus. Phytochemistry 42:1557–1562

    CAS  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40: 289–297

    PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology. New Phytol 1: 9–24

    Google Scholar 

  • Terasaka K, Sakai K, Sato F, Yamamoto H, Yazaki K (2003a) Thalictrum minus cell cultures and ABC-like transporter. Phytochemistry 62: 483–489

    CAS  Google Scholar 

  • Terasaka K, Shitan N, Sato F, Maniwa F, Ueda K, Yazaki K (2003b) Application of vanadate-induced nucleotide trapping to plant cells for detection of ABC proteins. Plant Cell Physiol 44: 198–200

    CAS  Google Scholar 

  • Thomson JM, Lafayette PR, Schmidt MA Parrott WA (2002) Artificial genecluster engineered into plants using a vector system based on intron – and intein-encoded endonucleases. In Vitro Cell Dev Biol Plant 38: 537–542

    CAS  Google Scholar 

  • Trethewey RN (2004) Metabolic profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7: 196–201

    PubMed  CAS  Google Scholar 

  • Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl Diphosphate Synthase, Limonene-6-Hydroxylase, Isopiperitenol Dehydrogenase, and Pulegone Reductase. Plant Physiol 136: 4215–4227

    PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7: 491–498

    PubMed  Google Scholar 

  • Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18: 465–475

    PubMed  CAS  Google Scholar 

  • Van der Fits L and Memelink J (2000) ORCA3, a Jasmonate-Responsive Transcriptional Regulator of Plant Primary and Secondary Metabolism. Science 289: 205–297

    Google Scholar 

  • van der Fits L, Hilliou F, Memelink J (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res 10: 513–521

    PubMed  Google Scholar 

  • Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37: 115–127

    PubMed  CAS  Google Scholar 

  • Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the Escherichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136: 4048–4060

    PubMed  CAS  Google Scholar 

  • Vines G (2004) Herbal harvests with a future: towards sustainable sources for medicinal plants, Plantlife International, www.plantlife.org.uk

    Google Scholar 

  • Weid M, Ziegler J, Kutchan TM (2004) From the cover: The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA 101: 13957–13962

    PubMed  CAS  Google Scholar 

  • Willits MG, Giovanni M, Prata RTN, Kramer CM, De Luca V, Steffens JC, Graser G (2004) Biofermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites. Phytochemistry 65: 31–41

    PubMed  CAS  Google Scholar 

  • Wink M (1999). Functions of plant secondary metabolites and their exploitation in biotechnology. Ann Plant Reviews, 3, CRC Press, Boca Raton, USA, pp 370

    Google Scholar 

  • Wink M, Schimmer O (1999) Modes of actions of defensive secondary metabolites. In: Wink M (ed) Functions of Plant Secondary Metabolites and their exploitation in Biotechnology. CRC Press, Boca Raton, FL, pp 17–112

    Google Scholar 

  • Winkel BS (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55: 85–107

    PubMed  CAS  Google Scholar 

  • Wise ML, Croteau R (1999) Biosythesis of monoterpenes. In: Cane DE (ed) Comprehensive Natural Products Chemistry, vol 2, Isoprenoids Including Carotenoids and Steroids. Elsevier, Oxford, pp 97–153

    Google Scholar 

  • Yazaki K, Shitan N, Takamatsu H, Ueda K, Sato F (2001) A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot 52: 877–879

    PubMed  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Op Plant Biol 8: 301–307

    CAS  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580: 1183–1191

    PubMed  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305

    PubMed  CAS  Google Scholar 

  • Yun D-J, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89: 11799–11803

    PubMed  CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey KM, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101: 6786–6791

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Leone, A., Grillo, S., Monti, L., Cardi, T. (2007). Molecular tailoring and boosting of bioactive secondary metabolites in medicinal plants. In: RANALLI, P. (eds) Improvement of Crop Plants for Industrial End Uses. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5486-0_16

Download citation

Publish with us

Policies and ethics