Skip to main content

OVERVIEW OF SIMULATION TECHNIQUES FOR PLASMONIC DEVICES

  • Chapter
Book cover Surface Plasmon Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 131))

Abstract

Surface plasmons are electromagnetic waves that propagate along the interface of a metal and a dielectric. In a surface plasmon light interacts with the free electrons of the metal which oscillate collectively in response to the applied field. Recently, nanometer-scale metallic devices have shown the potential to manipulate light at the subwavelength scale using surface plasmons. This could lead to photonic circuits of nanoscale dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Novotny, B. Hecht, D.W. Pohl: Interference of locally excited surface plasmons, J. Appl. Phys. 81 (4), 1798–1806 (1997).

    Article  CAS  Google Scholar 

  2. E. Prodan, P. Nordlander, N.J. Halas: Effects of dielectric screening on the optical properties of metallic nanoshells, Chem. Phys. Lett. 368 (1–2), 94–101 (2003).

    Article  CAS  Google Scholar 

  3. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  4. E.D. Palik ed: Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  5. A. Taflove: Computational Electrodynamics (Artech House, Boston, 1995).

    Google Scholar 

  6. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski: Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt. 37 (22) 5271–5283 (1998).

    CAS  Google Scholar 

  7. W.L. Barnes, A. Dereux, T.W. Ebbesen: Surface plasmon subwavelength optics, Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  8. A. Vial, A.S. Grimault, D. Macias, D. Barchiesi, M.L. de la Chapelle: Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method, Phys. Rev. B 71 (8), 85416 (2005).

    Article  CAS  Google Scholar 

  9. J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, J.P. Goudonnet: Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, Phys. Rev. B 60 (12), 9061–9068 (1999).

    Article  CAS  Google Scholar 

  10. J.A. Kong: Electromagnetic Wave Theory (Wiley, New York, 1990).

    Google Scholar 

  11. A.D. Yaghjian: Electric dyadic Green's functions in the source region. Proc. IEEE 68 (2), 248–263 (1980).

    Article  Google Scholar 

  12. J.P. Kottmann, O.J.F. Martin: Accurate solution of the volume integral equation for high-permittivity scatterers, IEEE Trans. Antennas Propagation 48 (11), 1719–1726 (2000).

    Article  Google Scholar 

  13. E.M. Purcell, C.R. Pennypacker: Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J. 186 (2), 705–714 (1973).

    Article  Google Scholar 

  14. B.T. Draine, P.J. Flatau: Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A 11 (4), 1491–1499 (1994).

    Article  Google Scholar 

  15. J.D. Jackson: Classical Electrodynamics (Wiley, New York, 1999).

    Google Scholar 

  16. J. Jin: The Finite Element Method in Electromagnetics (Wiley, New York, 2002).

    Google Scholar 

  17. G. Veronis, R.W. Dutton, S. Fan: Method for sensitivity analysis of photonic crystal devices, Opt. Lett. 29 (19), 2288–2290 (2004).

    Article  Google Scholar 

  18. J.P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (2), 185–200 (1994).

    Article  Google Scholar 

  19. J.A. Pereda, A. Vegas, A. Prieto: An improved compact 2D fullwave FDFD method for general guided wave structures, Microwave Opt. Technol. Lett. 38 (4), 331–335 (2003).

    Article  Google Scholar 

  20. D.A. Genov, A.K. Sarychev, V.M. Shalaev: Plasmon localization and local field distribution in metal-dielectric films, Phys. Rev. E 67 (5), 56611 (2003).

    Article  CAS  Google Scholar 

  21. J.L. Young, R.O. Nelson: A summary and systematic analysis of FDTD algorithms for linearly dispersive media. IEEE Antennas Propagation Mag. 43 (1), 61–77 (2001).

    Article  Google Scholar 

  22. M.N.O. Sadiku: Numerical Techniques in Electromagnetics (CRC Press, Boca Raton, 2001).

    Google Scholar 

  23. P. Berini, K. Wu: Modeling lossy anisotropic dielectric waveguides with the method of lines, IEEE Trans. Microwave Theory Tech. 44 (5), 749–759 (1996).

    Article  Google Scholar 

  24. C. Rockstuhl, M.G. Salt, H.P. Herzig: Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles, J. Opt. Soc. Am. A 20 (10), 1969–1973 (2003).

    Article  Google Scholar 

  25. E. Moreno, D. Erni, C. Hafner, R. Vahldieck: Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures, J. Opt. Soc. Am. A 19 (1), 101–111 (2002).

    Article  Google Scholar 

  26. D.M. Pozar: Microwave Engineering (Wiley, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mark L. Brongersma Pieter G. Kik

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

VERONIS, G., FAN, S. (2007). OVERVIEW OF SIMULATION TECHNIQUES FOR PLASMONIC DEVICES. In: Brongersma, M.L., Kik, P.G. (eds) Surface Plasmon Nanophotonics. Springer Series in Optical Sciences, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4333-8_12

Download citation

Publish with us

Policies and ethics