Skip to main content

Structural Analysis of Cyanobacterial Photosystem I

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

Photosystem I is a large membrane protein complex that catalyzes the first step of oxygenic photosynthesis. It can be regarded as a solar energy converter that captures the light from the sun through a large core-antenna system of chlorophylls and carotenoids and transfers the energy into the center of the complex, where the energy is used to catalyze the light-driven transmembrane electron transfer from plastocyanin to ferredoxin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adman ET, Sieker LC and Jensen LH (1973) The structure of a bacterial ferredoxin. J Biol Chem 248: 3987–3996

    PubMed  CAS  Google Scholar 

  • Akhmatskaya EV, Cooper MD, Burton NA, Masters AJ and Hillier IH (1999) Monte Carlo simulations of water clusters on a parallel computer using an ab initio potential. Int J Quantum Chem 74: 709–719

    Article  CAS  Google Scholar 

  • Anandan S, Vainstein A and Thornber JP (1989) Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCI pigment–protein and to subunits III and IV of the core complex. FEBS Lett 256: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Andersen B and Scheller HV (eds) (1993) Structure, Function and Assembly of Photosystem I. Academic Press, San Diego

    Google Scholar 

  • Andersen B, Scheller HV and Moller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Antonkine ML, Jordan P, Fromme P, Krauβ N, Golbeck JH and Stehlik D (2003) Assembly of protein subunits within the stromal ridge of photosystem I. Structural changes between unbound and sequentially PS I-bound polypeptides and correlated changes of the magnetic properties of the terminal iron sulfur clusters. J Mol Biol 327: 671–697

    Article  PubMed  CAS  Google Scholar 

  • Armbrust TS, Chitnis PR and Guikema JA (1996) Organization of photosystem I polypeptides examined by chemical crosslinking. Plant Physiol 111: 1307–1312

    PubMed  CAS  Google Scholar 

  • Barth P, Lagoutte B and Sétif P (1998) Ferredoxin reduction by photosystem I from Synechocystis sp. PCC 6803: toward an understanding of the respective roles of subunits PsaD and PsaE in ferredoxin binding. Biochemistry 37: 16233–16241

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2004) Evolution of photosystem I –from symmetry through pseudo-symmetry to asymmetry. FEBS Lett 564: 274–280

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK and Kruip J (2001) A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  PubMed  CAS  Google Scholar 

  • Boudreaux B, MacMillan F, Teutloff C, Agalarov R, Gu F, Grimaldi S, Bittl R, Brettel K and Redding K (2001) Mutations in both sides of the photosystem I reaction center identify the phylloquinone observed by electron paramagnetic resonance spectroscopy. J Biol Chem 276: 37299–37306

    Article  PubMed  CAS  Google Scholar 

  • Byrdin M, Jordan P, Krauβ N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I: modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457

    PubMed  CAS  Google Scholar 

  • Chitnis PR, Xu Q, Chitnis VP and Nechustai R (1995) Function and organization of photosystem I polypeptides. Photosynth Res 44: 23–40

    Article  CAS  Google Scholar 

  • Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie D-L and Chitnis PR (1993) Target inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 11678–11684

    PubMed  CAS  Google Scholar 

  • Chitnis VP, Jungs YS, Albee L, Golbeck JH and Chitnis PR (1996) Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J Biol Chem 271: 11772–11780

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP, Ke A and Chitnis PR (1997) The PsaD subunit of photosystem I. Mutations in the basic domain reduce the level of PsaD in the membranes. Plant Physiol 115: 1699–1705

    Article  PubMed  CAS  Google Scholar 

  • Cohen RO, Shen G, Golbeck JH, Xu W, Chitnis PR, Valieva AI, van der Est A, Pushkar Y and Stehlik D (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 43: 4741–4754

    Article  PubMed  CAS  Google Scholar 

  • Damjanovic A, Vaswani HM, Fromme P and Fleming GR (2002) Chlorophyll excitations in photosystem I of Synechococcus elongatus. J Phys Chem B 106: 10251–10262

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429–457

    Article  PubMed  CAS  Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Dunn PP, Packman LC, Pappin D and Gray JC (1988) N-terminal amino acid sequence analysis of the subunits of pea photosystem I. FEBS Lett 228: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Evans MCW, Reeves SG and Cammack R (1974) Determination of oxidation–reduction potential of bound iron–sulfur proteins of primary electron-acceptor complex of photosystem-I in spinach-chloroplasts. FEBS Lett 49: 111–114

    Article  PubMed  CAS  Google Scholar 

  • Fairclough WV, Forsyth A, Evans MC, Rigby SE, Purton S and Heathcote P (2003) Bidirectional electron transfer in photosystem I: electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim Biophys Acta 1606: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Falzone CJ, Kao YH, Zhao J, Bryant DA and Lecomte JT (1994a) Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33: 6052–6062

    Article  CAS  Google Scholar 

  • Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA and Lecomte JT (1994b) 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 33: 6043–6051

    Article  CAS  Google Scholar 

  • Farah J, Rappaport F, Choquet Y, Joliot P and Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. EMBO J 14: 4976–4984

    PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Boudreau E, Hippler M, Drepper F, Haehnel W and Rochaix JD (1999a) A large fraction of PsaF is nonfunctional in photosystem I complexes lacking the PsaJ subunit. Biochemistry 38: 5546–5552

    Article  CAS  Google Scholar 

  • Fischer N, Sétif P and Rochaix JD (1999b) Site-directed mutagenesis of the PsaC subunit of photosystem I. F(b) is the cluster interacting with soluble ferredoxin. J Biol Chem 274: 23333–23340

    Article  CAS  Google Scholar 

  • Fish L, Kück U and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of photosystem I. J Biol Chem 260: 1413–1421

    PubMed  CAS  Google Scholar 

  • Frazao C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervas M, Navarro JA, De la Rosa MA and Sheldrick GM (1995) Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure 3: 1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Fromme P (1998) Crystallization of Photosystem I for Structural Analysis. Habilitation. Technical University Berlin, Berlin, Germany

    Google Scholar 

  • Fromme P, Jordan P and Krauβ N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Bottin H, Krauβ N and Sétif P (2002) Crystallization and EPR characterization of a functional complex of photosystem I with its natural electron acceptor ferredoxin. Biophys J 83: 1760–1763

    PubMed  CAS  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauβ N (2003) Structure and function of photosystem I. Interaction with its soluble electron carriers and external antenna system. FEBS Lett 555, 40–44

    Article  PubMed  CAS  Google Scholar 

  • Gavel Y, Steppuhn J, Herrmann R and von Heijne G (1991) The “positive inside rule” applies to thylakoid membrane proteins. FEBS Lett 282: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Gibasiewicz K, Ramesh VM, Lin S, Redding K, Woodbury NW and Webber AN (2003) Excitonic interactions in wild-type and mutant PSI reaction centers. Biophys J 85: 2547–2559

    PubMed  CAS  Google Scholar 

  • Golbeck JH (1993) The structure of photosystem I. Curr Opin Struct Biol 3: 508–514

    Article  CAS  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) Advances in Photosynthesis: The Molecular Biology of Cyanobacteria, Vol 1, pp 319–360. Kluwer Academics, Dordrecht, The Netherlands

    Google Scholar 

  • Golbeck JH (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. Photosynth Res 61: 107–144

    Article  CAS  Google Scholar 

  • Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P and Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98: 4437–4442

    Article  PubMed  CAS  Google Scholar 

  • Haehnel W, Jansen T, Gause K, Klosgen RB, Stahl B, Michl D, Huvermann B, Karas M and Herrmann RG (1994) Electron transfer from plastocyanin to photosystem I. EMBO J 13: 1028–1038

    PubMed  CAS  Google Scholar 

  • Hallahan B, Purton S, Ivison A, Wright D and Evans MCW (1995) Analysis of the proposed FeSx binding region of photosystem I by side directed mutation of PsaA in Chlamydomonas rheinhardtii. Photosynth Res 46: 257–264

    Article  CAS  Google Scholar 

  • Hastings G, Hoshina S, Webber AN and Blankenship RE (1995) Universality of energy and electron transfer processes in photosystem I. Biochemistry 34: 15512–15522

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schroer U, Herrmann RG and Haehnel W (1996) The plastocyanin binding domain of photosystem I. EMBO J 15: 6374–6384

    PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Farah J and Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36: 6343–6349

    Article  PubMed  CAS  Google Scholar 

  • Hippler M, Drepper F, Haehnel W and Rochaix JD (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339–7344

    Article  PubMed  CAS  Google Scholar 

  • Hladik J and Sofrova D (1991) Does the trimeric form of the photosystem-1 reaction center of cyanobacteria in vivo exist. Photosynth Res 29: 171–175

    CAS  Google Scholar 

  • Hugosson M, Nurani G, Glaser E and Franzen LG (1995) Peculiar properties of the PsaF photosystem I protein from the green alga Chlamydomonas reinhardtii: presequence independent import of the PsaF protein into both chloroplasts and mitochondria. Plant Mol Biol 28: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Ikegami I, Itoh S and Iwaki M (2000) Selective extraction of antenna chlorophylls, carotenoids and quinones from photosystem I reaction center. Plant Cell Physiol 41: 1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Nyhus KJ, Inoue Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett 287: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Ishikita H and Knapp EW (2003) Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 278: 52002–52011

    Article  PubMed  CAS  Google Scholar 

  • Janson S, Andersen B and Scheller HV (1996) Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol 112: 409–420

    Article  Google Scholar 

  • Jeanjean R, Zuther E, Yeremenko N, Havaux M, Matthijs HC and Hagemann M (2003) A photosystem 1 psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions. FEBS Lett 549: 52–56

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Klukas O, Witt HT, Saenger W and Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV (2004) The dynamics of excitation energy in photosystem I of cyanobacteria: transfer in the antenna, capture by the reaction site, and dissipation. Biofizika 49: 212–226

    CAS  Google Scholar 

  • Karapetyan NV, Shubin VV and Strasser RJ (1999) Energy exchange between the chlorophyll antennae of monomeric subunits within the photosystem I trimeric complex of the cyanobacterium Spirulina. Photosynth Res 61: 291–301

    Article  CAS  Google Scholar 

  • Karnauchov I, Cai D, Schmidt I, Herrmann RG and Klosgen RB (1994) The thylakoid translocation of subunit 3 of photosystem I, the psaF gene product, depends on a bipartite transit peptide and proceeds along an azide-sensitive pathway. J Biol Chem 269: 32871–32878

    PubMed  CAS  Google Scholar 

  • Kass H, Bittersmannweidlich E, Andreasson LE, Bonigk B and Lubitz W (1995) ENDOR and ESEEM of the N-15 labeled radical cations of chlorophyll-a and the primary donor P-700 in photosystem-I. Chem Phys 194: 419–432

    Article  Google Scholar 

  • Kass H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation P-700+ in photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105: 1225–1239

    Article  CAS  Google Scholar 

  • Kjaerulff S, Andersen B, Nielsen VS, Møller BL and Okkels JS (1993) The PSI-K subunit of photosystem I from barley (Hordeum vulgare L.). Evidence for a gene duplication of an ancestral PSI-G/K gene. J Biol Chem 268: 18912–18916

    PubMed  CAS  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, Krauβ N, Fromme P, Witt HT and Saenger W (1999) Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. J Biol Chem 274: 7351–7360

    Article  PubMed  CAS  Google Scholar 

  • Koike K, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of photosystem I components from the cyanobacterium Synechococcus vulcanus by N-terminal sequencing. FEBS Lett. 253: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R, Yeremenko N, D’Haene S, Yakushevska AE, Keegstra W, Matthijs HC, Dekker JP and Boekema EJ (2003) Photosystem I trimers from Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of 17 units. Biochim Biophys Acta 1607: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Kruip J, Chitnis PR, Lagoutte B, Rögner M and Boekema EJ (1997) Structural organization of the major subunits in cyanobacterial photosystem 1. Localization of subunits PsaC, -D, -E, -F, and -J. J Biol Chem 272: 17061–17069

    Article  PubMed  CAS  Google Scholar 

  • Lagoutte B, Hanley J and Bottin H (2001) Multiple functions for the C terminus of the PsaD subunit in the cyanobacterial photosystem I complex. Plant Physiol 126: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Lakshmi KV, Jung YS, Golbeck JH and Brudvig GW (1999) Location of the iron–sulfur clusters FA and FB in photosystem I: an electron paramagnetic resonance study of spin relaxation enhancement of P700+. Biochemistry 38: 13210–13215

    Article  PubMed  CAS  Google Scholar 

  • Lelong C, Sétif P, Lagoutte B and Bottin H (1994) Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem 269: 10034–10039

    PubMed  CAS  Google Scholar 

  • Lelong C, Boekema EJ, Kruip J, Bottin H, Rögner M and Sétif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxin. EMBO J 15: 2160–2168

    PubMed  CAS  Google Scholar 

  • Li N, Warren PV, Golbeck JH, Frank G, Zuber H and Bryant DA (1991) Polypeptide composition of the photosystem I complex and the photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–225

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Raszewski G, Saenger W and Biesiadka J (2003) Functional role of Cα-HλO hydrogen bonds between transmembrane α-helices in photosystem I. J Mol Biol 328: 737–747

    Article  PubMed  CAS  Google Scholar 

  • Lüneberg J, Fromme P, Jekow P and Schlodder E (1994) Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp. –Identical reoxidation kinetics of A1- before and after removal of the iron–sulfur clusters FA and FB. FEBS Lett 338: 197–120

    Article  PubMed  Google Scholar 

  • Lushy A, Verchovsky L and Nechushtai R (2002) The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions. Biochemistry 41: 11192–11199

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Watanabe T, Kobayashi M and Ikegami I (1992) Presence of two chorophyll a′ molecules at the core of photosystem I. Biochim Biophys Acta 1099: 74–80

    Article  CAS  Google Scholar 

  • Mant A, Woolhead CA, Moore M, Henry R and Robinson C (2001) Insertion of PsaK into the thylakoid membrane in a “Horseshoe” conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional albino3. J Biol Chem 276: 36200–36206

    Article  PubMed  CAS  Google Scholar 

  • Maroc J and Tremolieres A (1990) Chlorophyll a′ and pheophytin a, as determined by HPLC, in photosynthesis mutants and double mutants of Chlamydomonas reinhardtii. Biochem Biophys Acta 1018: 67–71

    Article  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Mehari T, Qiao F, Scott MP, Nellis DF, Zhao J, Bryant DA and Golbeck JH (1995) Modified ligands to FA and FB in photosystem I. I. Structural constraints for the formation of iron–sulfur clusters in free and rebound PsaC. J Biol Chem 270: 28108–28117

    Article  PubMed  CAS  Google Scholar 

  • Meimberg K, Lagoutte B, Bottin H and Mühlenhoff U (1998) The PsaE subunit is required for complex formation between photosystem I and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 37: 9759–9767

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Diaz-Quintana A, Hervas M, Navarro JA and De La Rosa MA (1999) Site-directed mutagenesis of cytochrome c(6) from Anabaena species PCC 7119. Identification of surface residues of the hemeprotein involved in photosystem I reduction. J Biol Chem 274: 33565–33570

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt H and Herrmann RG (1993) Genes encoding 11 subunits of photosystem-I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78

    Article  PubMed  Google Scholar 

  • Mühlenhoff U, Kruip J, Bryant DA, Rögner M, Sétif P and Boekema E (1996a) Characterization of a redox-active cross-linked complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. EMBO J 15: 488–497

    Google Scholar 

  • Mühlenhoff U, Zhao J and Bryant DA (1996b) Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical cross-linking. Eur J Biochem 235: 324–331

    Article  Google Scholar 

  • Muller MG, Niklas J, Lubitz W and Holzwarth AR (2003) Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys J 85: 3899–3922

    PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M and Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Morris EP, Bibby TS and Barber J (2003) Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. Biochemistry 42: 3180–3188

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukazawa H, Kohchi T, Shirai H, Tohru S, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota SI, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Pakrasi HB (1995) Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genet 995: 755–756

    Article  Google Scholar 

  • Palsson LO, Flemming C, Gobets B, van Grondelle R, Dekker JP and Schlodder E (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J 74: 2611–2622

    PubMed  CAS  Google Scholar 

  • Pandini V, Aliverti A and Zanetti G (1999) Interaction of the soluble recombinant PsaD subunit of spinach photosystem I with ferredoxin I. Biochemistry 38: 10707–10713

    Article  PubMed  CAS  Google Scholar 

  • Plato M, Krauβ N, Fromme P and Lubitz W (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis. Chem Phys 294: 483–499

    Article  CAS  Google Scholar 

  • Ramesh VM, Gibasiewicz K, Lin S, Bingham SE and Webber AN (2004) Bidirectional electron transfer in photosystem I: accumulation of A0- in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry 43: 1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Romer S, Senger H and Bishop N (1995) Characterization of the carotenoidless strain of Scenedesmus oliquus, mutant C-6E, a living photosystem I model. Bot Acta 108: 80–86

    Google Scholar 

  • Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PSI-E subunit in the reduction of ferredoxin by photosystem I. EMBO J 12: 1755–1765

    PubMed  CAS  Google Scholar 

  • Scheller HV, Jensen PE, Haldrup A, Lunde C and Knoetzel J (2001) Role of subunits in eukaryotic photosystem I. Biochim Biophys Acta 1507: 41–60

    Article  PubMed  CAS  Google Scholar 

  • Schluchter WM, Shen G, Zhao J and Bryant DA (1996) Characterization of psaI and psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem Photobiol 64: 53–66

    PubMed  CAS  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauβ N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314

    Article  PubMed  CAS  Google Scholar 

  • Scott MP, Nielsen VS, Knoetzel J, Andersen R and Møller BL (1994) Import of the barley PSI-F subunit into the thylakoid lumen of isolated chloroplasts. Plant Mol Biol 26: 1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Sener M, Park S, Lu DY, Damjanovic A, Ritz T, Fromme P and Schulten K (2004) Excitation migration in trimeric cyanobacterial photosystem I. J Chem Phys 120, 11183–11195

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Jolley C, Ben-Shem A, Fromme P, Nelson N, Croce R and Schulten K (2005) Comparison of the light-harvesting networks of plant and cyanobacterial photosystem I. Biophys J 8–9, 1630–1642

    Article  CAS  Google Scholar 

  • Sétif P (2001) Ferredoxin and flavodoxin reduction by photosystem I. Biochim Biophys Acta 1507: 161–179

    Article  PubMed  Google Scholar 

  • Sétif P, Fischer N, Lagoutte B, Bottin H and Rochaix JD (2002) The ferredoxin docking site of photosystem I. Biochim Biophys Acta 1555: 204–209

    Article  PubMed  Google Scholar 

  • Shen GZ, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao JD, Stehlik D, Bryant DA and Golbeck JH (2002) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of FX in Synechococcus sp PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277: 20355–20366

    Article  PubMed  CAS  Google Scholar 

  • Sommer F, Drepper F and Hippler M (2002) The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. J Biol Chem 277: 6573–6581

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Hatanaka H and Katoh S (1993) Small subunits of photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141: 52–57

    Article  PubMed  CAS  Google Scholar 

  • Strotmann H and Weber N (1993) On the function of PsaE in chloroplast photosystem I. Biochim Biophys Acta 1143: 204–210

    Article  PubMed  Google Scholar 

  • Van der Est A, Bock C, Golbeck JH, Brettel K, Sétif P and Stehlik D (1994) Electron transfer from the acceptor A1 to the iron–sulfur centers in photosystem I as studied by transient EPR spectroscopy. Biochemistry 33: 11789–11797

    Article  PubMed  Google Scholar 

  • van Thor JJ, Geerlings TH, Matthijs HC and Hellingwerf KJ (1999) Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/Ferredoxin/ Ferredoxin:NADP( + ) reductase in a cyanobacterium. Biochemistry 38: 12735–12746

    Article  PubMed  CAS  Google Scholar 

  • Varotto C, Pesaresi P, Jahns P, Lessnick A, Tizzano M, Schiavon F, Salamini F and Leister D (2002) Single and double knockouts of the genes for photosystem I subunits G, K, and H of Arabidopsis. Effects on photosystem I composition, photosynthetic electron flow, and state transitions. Plant Physiol 129: 616–624

    Article  PubMed  CAS  Google Scholar 

  • Vassiliev IR, Jung YS, Smart LB, Schulz R, McIntosh L and Golbeck JH (1995) A mixed-ligand iron–sulfur cluster (C556SPsaB or C565SPsaB) in the FX binding site leads to a decreased quantum efficiency of electron transfer in photosystem I. Biophys J 69: 1544–1553

    PubMed  CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Hongu A, Nakazato M and Hiyama T (1985) Evidence, that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus. FEBS Lett 235: 252–256

    Article  Google Scholar 

  • Xu Q, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994a) Mutational analysis of photosystem I polypeptides in Synechocystis sp. PCC 6803. Subunit requirements for reduction of NADP+ mediated by ferredoxin and flavodoxin. J Biol Chem 269: 21512–21518

    CAS  Google Scholar 

  • Xu Q, Odom WR, Guikema JA, Chitnis VP and Chitnis PR (1994b) Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of photosystem I. Plant Mol Biol 26: 291–302

    Article  CAS  Google Scholar 

  • Xu Q, Yu L, Chitnis VP and Chitnis PR (1994c) Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205–3211

    CAS  Google Scholar 

  • Xu Q, Hoppe D, Chitnis VP, Odom WR, Guikema JA and Chitnis PR (1995) Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL. J Biol Chem 270: 16243–16250

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140–158

    PubMed  CAS  Google Scholar 

  • Yu L, Zhao J, Mühlenhoff U, Bryant DA and Golbeck JH (1993) PsaE Is required for in vivo cyclic electron flow around photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180

    PubMed  CAS  Google Scholar 

  • Yu L, Bryant DA and Golbeck JH (1995a) Evidence for a mixed-ligand [4Fe–4S] cluster in the C14D mutant of PsaC. Altered reduction potentials and EPR spectral properties of the FA and FB clusters on rebinding to the P700-FX core. Biochemistry 34: 7861–7868

    Article  CAS  Google Scholar 

  • Yu L, Vassiliev IR, Jung YS, Bryant DA and Golbeck JH (1995b) Modified ligands to FA and FB in photosystem I. II. Characterization of a mixed ligand [4Fe–4S] cluster in the C51D mutant of PsaC upon rebinding to P700-FX cores. J Biol Chem 270: 28118–28125

    Article  CAS  Google Scholar 

  • Zanetti G and Merati G (1987) Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang SP and Scheller HV (2004) Light-harvesting complex II binds to several small subunits of photosystem I. J Biol Chem 279: 3180–3187

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe–4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9: 183–194

    Article  PubMed  CAS  Google Scholar 

  • Zilber M, Malkin R (1988) Ferredoxin cross-links to a 22 kDa subunit of photosystem I. Plant Physiol 88: 810–814

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Jordan R, Schlodder E, Fromme P and Witt H (2000) First photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457: 103–105

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauβ N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Fromme, P., Grotjohann, I. (2006). Structural Analysis of Cyanobacterial Photosystem I. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_6

Download citation

Publish with us

Policies and ethics