Skip to main content

EPR Studies of the Primary Electron Donor P700 in Photosystem

  • Chapter
Photosystem I

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 24))

Abstract

The primary donor P700 in Photosystem I (PS I) is a heterodimer comprised of a chlorophyll a and a chlorophyll á. The electronic structure of this species, which is related to its function in vivo, can be studied by EPR techniques applied to the paramagnetic states P700+ (cation radical) and 3P700 (triplet state) of the primary donor. In the case of P700+ observables are the electronic g tensor and the electron-nuclear hyperfine and nuclear quadrupole coupling tensors; in the case of 3P700 the electron–electron dipolar coupling tensor serves as an additional probe. In this contribution, the determination of the magnetic resonance parameters by EPR techniques are described. Conclusions about the electronic structure, in particular about the spin and charge density distribution in this species, are drawn. The results are corroborated by studies of model systems and of the primary donor in genetically modified photosystem I preparations, which gives information on the effect of the protein surroundings. Emphasis is placed on a theoretical description of P700 in its various states, which is based on a comparison with molecular orbital calculations. Implications of the experimental findings for the functional properties of the primary donor in photosystem I are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP and Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. J Bioenerg Biomembr 27: 275–283

    Article  PubMed  CAS  Google Scholar 

  • Amesz J and Hoff AJ (eds) 1995. Biophysical Techniques in Photosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Angerhofer A (1991) Chlorophyll triplets and radical pairs. In: Scheer H (ed) Chlorophylls, pp 945–991. CRC Press, Boca Raton, FL

    Google Scholar 

  • Astashkin AV, Dikanov SA, Tsvetkov YD and Goldfeld MG (1987) Comparative analysis of ESE modulation from oxidized chlorophyll a and P700 centers in chloroplasts containing N-15 nuclei. Chem Phys Lett 134: 438–443

    Article  CAS  Google Scholar 

  • Atherton NM (1993) Principles of Electron Spin Resonance. Ellis Horwood PTR, Prentice Hall, New York

    Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Bratt PJ, Rohrer M, Krzystek J, Evans MCW, Brunel L-C and Angerhofer A (1997) Submillimeter high-field EPR studies of the primary donor in plant photosystem I P700+. J Phys Chem 101: 9686–9689

    CAS  Google Scholar 

  • Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel L-C, Schrier J, Hsiao Y-W, Zerner M and Angerhofer A (2000) The g-factor anisotropy of plant chlorophyll a·+. J Phys Chem B 104: 6973–6977

    Article  CAS  Google Scholar 

  • Breton J (2001) Fourier transform infrared spectroscopy of primary electron donors in type I photosynthetic reaction centers. Biochim Biophys Acta 1507: 180–193

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Nabedryk E and Leibl W (1999) FTIR Study of the primary electron donor of photosystem I (P700) revealing delocalization of the charge in P700+ and localization of the triplet character in 3P700. Biochemistry 38: 11585–11592

    Article  PubMed  CAS  Google Scholar 

  • Breton J, Xu W, Diner BA and Chitnis P (2002) The two histidine axial ligands of the primary electron donor chlorophylls (P700) in photosystem I are similarly perturbed upon P700+ formation. Biochemistry 41: 11200–11210

    Article  PubMed  CAS  Google Scholar 

  • Brettel K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318: 322–373

    Article  CAS  Google Scholar 

  • Brettel K and Leibl W (2001) Electron transfer in photosystem I. Biochim Biophys Acta 1507: 100–114

    Article  PubMed  CAS  Google Scholar 

  • Budil DE and Thurnauer MC (1991) The chlorophyll triplet state as a probe of structure and function in photosynthesis. Biochim Biophys Acta 1057: 1–41

    Article  PubMed  CAS  Google Scholar 

  • Carbonera D, Collareta P and Giacometti G (1997) The P700 triplet state in an intact environment detected by ODMR. A well resolved triplet minus singlet spectrum. Biochim Biophys Acta 1322: 115–128

    Article  CAS  Google Scholar 

  • Commoner B, Heise JJ and Townsend J (1956) Light-induced paramagnetism in chloroplasts. Proc Natl Acad Sci USA 42: 710–718

    Article  PubMed  CAS  Google Scholar 

  • Cui LY, Bingham SE, Kuhn M, Käss H, Lubitz W and Webber AN (1995) Site-directed mutagenesis of conserved histidines in the helix-VIII domain of PsaB impairs assembly of the photosystem-I reaction-center without altering spectroscopic characteristics of P-700. Biochemistry 34: 1549–1558

    Article  PubMed  CAS  Google Scholar 

  • Datta SN, Parandekar PV and Lochan RC (2001) Identity of green plant reaction centers from quantum chemical determination of redox potentials of special pairs. J Phys Chem B 105: 1442–1451

    Article  CAS  Google Scholar 

  • Davis MS, Forman A and Fajer J (1979) Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci USA 76: 4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Davis IH, Heathcote P, MacLachlan DJ and Evans MCW (1993) Modulation analysis of the electron-spin echo signals of in vivo oxidized primary donor N-14 chlorophyll centers in bacterial, P870 and P960, and plant photosystem-I, P700, reaction centers. Biochim Biophys Acta 1143: 183–189

    Article  CAS  Google Scholar 

  • Deligiannakis Y and Rutherford AW (2001) Electron spin echo envelope modulation spectroscopy in photosystem I. Biochim Biophys Acta 1507: 226–246

    Article  PubMed  CAS  Google Scholar 

  • Dikanov SA and Tsvetkov YD (1992) Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Dikanov SA, Astashkin AV, Tsvetkov YD and Goldfeld MG (1983) Comparative modulation analysis of electron spin echo signals from oxidized chlorophyll a in vitro and P700 centres in chloroplasts. Chem Phys Lett 101: 206–210

    Article  CAS  Google Scholar 

  • Döring G, Bailey JL, Kreutz W, Weikard J and Witt HT (1968) The action of two chlorophyll-a| molecules in light reaction I of photosynthesis. Naturwissenschaften 55: 219–220

    Article  PubMed  Google Scholar 

  • Dörnemann D and Senger H (1986) The structure of chlorophyll-RC-I –a chromophore of the reaction center of photosystem-I. Photochem Photobiol 43: 573–581

    Google Scholar 

  • Frank HA, McLean MB and Sauer K (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc Natl Acad Sci USA 76:5124–5128

    Article  PubMed  CAS  Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507: 5–31

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith JO, King B and Boxer SG (1996) Mg coordination by amino acid side chains is not required for assembly and function of the special pair in bacterial photosynthetic reaction centers. Biochemistry 35: 2421–2428

    Article  PubMed  CAS  Google Scholar 

  • Hastings G, Ramesh VM, Wang R, Sivakumar V and Webber A (2001) Primary donor photo-oxidation in photosystem I: a re-evaluation of (P700(+) − P700) Fourier transform infrared difference spectra. Biochemistry 40: 12943–12949

    Article  PubMed  CAS  Google Scholar 

  • Hoff AJ (1979) Applications of ESR in photosynthesis. Phys Rep 54: 75–200

    Article  CAS  Google Scholar 

  • Hoff AJ (1996) Optically detected magnetic resonance (ODMR) of triplet states in Photosynthesis. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, Advances in Photosynthesis, Vol 3, pp 277–295. Kluwer, Dordrecht

    Google Scholar 

  • Huber M, Lendzian F, Lubitz W, Tränkle E, Möbius K and Wasielewski MR (1986) ENDOR and triple resonance in solutions of the chlorophyll-a and bis(chlorophyll)cyclophane radical cations. Chem Phys Lett 132: 467–473

    Article  CAS  Google Scholar 

  • Hyde JS and Rist GH (1968) Endor of methyl, matrix, and α protons in amorphous and polycrystalline matrices. J Phys Chem B 72: 4269–4276

    Article  CAS  Google Scholar 

  • Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J and Parson WW (2002) Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B 106: 11859–11869

    Article  CAS  Google Scholar 

  • Jordan R, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Käss H (1995) Die Struktur des primären Donators P700 in photosystem I: Untersuchungen mit Methoden der stationären und gepulsten Elektronspinresonanz. Dissertation. Technische Universität Berlin

    Google Scholar 

  • Käss H and Lubitz W (1996) Evaluation of 2D-ESEEM data of N-15-labeled radical cations of the primary donor P-700 in photosystem I and chlorophyll a. Chem Phys Lett 251: 193–203

    Article  Google Scholar 

  • Käss H, Bittersmann-Weidlich E, Andréasson L-E, Bönigk B and Lubitz W (1995) ENDOR and ESEEM of the N-15 labelled radical cations of chlorophyll-a and the primary donor P-700 in photosystem-I. Chem Phys Lett 194: 419–432

    Google Scholar 

  • Käss H, Fromme P and Lubitz W (1996) Quadrupole parameters of nitrogen nuclei in the cation radical P700·+ determined by ESEEM of single crystals of photosystem I. Chem Phys Lett 257: 197–206

    Article  Google Scholar 

  • Käss H, Lubitz W, Hartwig G, Scheer H, Noy D and Scherz A (1998) ENDOR studies of substituted chlorophyll cation radicals. Spectrochim Acta 54A: 1141–1156

    Google Scholar 

  • Käss H, Fromme P, Witt HT and Lubitz W (2001) Orientation and electronic structure of the primary donor radical cation P−700·+ in photosystem I: a single crystals EPR and ENDOR study. J Phys Chem B 105: 1225–1239

    Article  CAS  Google Scholar 

  • Klette R, Törring JT, Plato M, Möbius K, Bönigk B and Lubitz W (1993) Determination of the g tensor of the primary donor cation radical in single-crystals of Rhodobacter-sphaeroides R-26 reaction centers by 3-mm high-field EPR. J Phys Chem 97: 2015–2020

    Article  CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T and Murata N (1988) Chlorophyll a/P-700 and pheophytin a/P-680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936: 81–89

    Article  CAS  Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705 mμ in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1957) Absorption changes induced by the photochemical reaction of photosynthesis. Nature 179: 583–584

    Article  CAS  Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidation reduction potential of photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Krabben L, Schlodder E, Jordan R, Carbonera D, Giacometti G, Lee H, Webber AN and Lubitz W (2000) Influence of the axial ligands on the spectral properties of P700 of photosystem I: a study of site-directed mutants. Biochemistry 39: 13012–13025

    Article  PubMed  CAS  Google Scholar 

  • Kurreck H, Kirste B and Lubitz W (1988) Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution –Applications to Organic and Biological Chemistry. VCH Publishers, Inc., Deerfield Beach, Florida

    Google Scholar 

  • Labahn A and Huber C (2001) The g-tensor anisotropy of the triplet state of the primary electron donor in the photosynthetic bacterium Rhodobacter sphaeroides by high-field (95 GHz) EPR. Appl Magn Reson 21: 381–387

    CAS  Google Scholar 

  • Lendzian F (1982) Elektron-Kern-Mehrfachresonanz an Primärprodukten der Photosynthese. Dissertation. Technische Universität Berlin

    Google Scholar 

  • Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bönigk B, Möbius K, Lubitz W and Feher G (1993) The electronic-structure of the primary donor cation-radical in Rhodobacter-sphaeroides R-26 –ENDOR and triple-resonance studies in single-crystals of reaction centers. Biochim Biophys Acta 1183: 139–160

    Article  CAS  Google Scholar 

  • Lubitz W (1991) EPR and ENDOR studies of chlorophyll cation and anion radicals. In: Scheer H (ed) Chlorophylls, pp 903–944. CRC Press, Inc., Boca Raton, FL

    Google Scholar 

  • Lubitz W and Lendzian F (1996) ENDOR spectroscopy. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, Advances in Photosynthesis, Vol 3, pp 255–275. Kluwer, Dordrecht

    Google Scholar 

  • Lucken EAC (1969) Nuclear Quadrupole Couplings Constants. Academic Press, London

    Google Scholar 

  • Mac M, Tang X-S, Diner BA, McCracken J and Babcock GT (1996) Identification of histidine as an axial ligand to P700·+. Biochemistry 35: 13288–13293

    Article  PubMed  CAS  Google Scholar 

  • Mac M, Bowlby NR, Babcock GT and McCracken J (1998) Monomeric spin density distribution in the primary donor of photosystem I as determined by electron magnetic resonance: functional and thermodynamic implications. J Am Chem Soc 120: 13215–13223

    Article  CAS  Google Scholar 

  • Mattioli TA, Lin X, Allen JP and Williams JC (1995) Correlation between multiple hydrogen-bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34: 6142–6152

    Article  PubMed  CAS  Google Scholar 

  • Möbius K and Lubitz W (1987) ENDOR Spectroscopy in Photobiology and Biochemistry. In: Berliner LJ and Reuben J (eds) Biological Magnetic Resonance, Vol 7, pp 129–247. Plenum Press, New York

    Google Scholar 

  • Möbius K and Plato M (1996) Structure information on the bacterial primary donor P·+, acceptor QA ·−, and radical Pair P·+QA ·− as obtained from high-field EPR/ENDOR and MO studies. In: Michel-Beyerle MB (ed) The Reaction Center of Photosynthetic Bacteria, pp 63–80. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Müh F, Schulz C, Schlodder E, Jones MR, Rautter J, Kuhn M and Lubitz W (1998) Effects of zwitterionic detergents on the electronic structure of the primary donor and the charge recombination kinetics of P+QA in native and mutant reaction centers from Rhodobacter sphaeroides. Photosynth Res 55: 199–205

    Article  Google Scholar 

  • Müh F, Gardiner AT, Witt H, Schulz C, Imhoff JF, Cogdell RJ and Lubitz W (2001) Conserved electronic structure of the primary donor in reaction centers of sulfur and non-sulfur purple bacteria. Proceedings of the 12th International Congress on Photosynthesis, Brisbane, Australia. CSIRO Publishing (S7-005)

    Google Scholar 

  • Müh F, Lendzian F, Roy M, Williams JC, Allen JP and Lubitz W (2002) Pigment–protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B 106: 3226–3236

    Article  CAS  Google Scholar 

  • Müller M, Niklas J, Lubitz W and Holzwarth AR (2003) Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in photosystem I. Biophys J 85: 3899–3822

    PubMed  Google Scholar 

  • Nakamura A and Watanabe T (1998) HPLC determination of photosynthetic pigments during greening of etiolated barley leaves. FEBS Lett 426: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Norris JR, Uphaus RA, Crespi HL and Katz JJ (1971) Electron spin resonance of chlorophyll and origin of signal-I in photosynthesis. Proc Natl Acad Sci USA 68: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Norris JR, Scheer H and Katz JJ (1975) Models for antenna and reaction center chlorophylls. Ann NY Acad Sci 244: 260–280

    Article  PubMed  CAS  Google Scholar 

  • O’Malley PJ (2000) The effect of oxidation and reduction of chlorophyll a on its geometry, vibrational and spin density properties as revealed by hybrid density functional methods. J Am Chem Soc 122: 7798–7801

    Article  CAS  Google Scholar 

  • O’Malley PJ and Babcock GT (1984) Electron nuclear double resonance evidence supporting a monomeric nature for P700·+ in spinach chloroplasts. Proc Natl Acad Sci USA 81: 1098–1101

    Article  PubMed  CAS  Google Scholar 

  • O’Malley PJ and Collins SJ (2001) The effect of axial Mg ligation on the geometry and spin density distribution of chlorophyll cation free radical models: a density functional study. J Am Chem Soc 123: 11042–11046

    Article  PubMed  CAS  Google Scholar 

  • Parson WW, Nabedryk E, and Breton J (1992) Mid- and near-IR electronic transitions of P·+: new probes of resonance interactions and structural asymmetry in reaction centers. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 79–88. Plenum Press, New York

    Google Scholar 

  • Pashenko SV, Gast P and Hoff AJ (2001) A D-band (130 GHz) EPR study of the primary electron donor triplet state in photosynthetic reaction centers of Rhodobacter sphaeroides R26. Appl Magn Reson 21: 325–334

    Article  Google Scholar 

  • Pashenko SV, Proskuryakov II, Germano M, van Gorkom HJ and Gast P (2003) Triplet state in photosystem II reaction centers as studied by 130 GHz EPR. Chem Phys 294: 439–449

    Article  CAS  Google Scholar 

  • Petrenko A, Maniero AL, van Tol J, MacMillan F, Li Y, Brunel L-C and Redding K (2004) A high-field EPR study of P700·+ in wild-type and mutant photosystem I from Chlamydomonas reinhardtii. Biochemistry 43: 1781–1786

    Article  PubMed  CAS  Google Scholar 

  • Plato M and Möbius K (1995) Structural characterization of the primary donor in photosynthetic bacteria by its electronic g-tensor. Chem Phys 197: 289–295

    Article  CAS  Google Scholar 

  • Plato M, Lubitz W, Lendzian F and Möbius K (1988a) Magnetic resonance and molecular orbital studies of the primary donor cation radical P960·+ in the photosynthetic bacterium Rhodopseudomonas viridis. Isr J Chem 28: 109–119

    CAS  Google Scholar 

  • Plato M, Möbius K, Michel-Beyerle MB, Bixon M and Jortner J (1988b) Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J Am Chem Soc 110: 7279–7285

    Article  CAS  Google Scholar 

  • Plato M, Möbius K, and Lubitz W (1991) Molecular orbital calculations on chlorophyll radical ions. In: Scheer H (ed) Chlorophylls, pp 1015–1046. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  • Plato M, Lendzian F, Lubitz W, and Möbius K (1992) Molecular orbital study of electronic asymmetry in primary donors of bacterial reaction centers. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 109–118. Plenum Press, New York

    Google Scholar 

  • Plato M, Krauß N, Fromme P and Lubitz W (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis. Chem Phys 294: 483–499

    Article  CAS  Google Scholar 

  • Poluektov OG, Utschig LM, Schlesselman SL, Lakshmi KV, Brudvig GW, Kothe G and Thurnauer MC (2002) Electronic structure of the P700 special pair from high-frequency electron paramagnetic resonance spectroscopy. J Phys Chem B 106: 8911–8916

    Article  CAS  Google Scholar 

  • Prisner T, McDermott AE, Un S, Norris JR, Thurnauer MC and Griffin RG (1993) Measurement of the g-tensor of the P700·+ signal from deuterated cyanobacterial photosystem-I particles. Proc Natl Acad Sci USA 90: 9485–9788

    Article  PubMed  CAS  Google Scholar 

  • Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X, Williams JC, Allen JP and Lubitz W (1995) ENDOR studies of the primary donor cation-radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry 34: 8130–8143

    Article  PubMed  CAS  Google Scholar 

  • Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J and Rochaix J-D (1998) A systematic survey of conserved histidines in the core subunits of photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J. 17: 50–60

    Article  PubMed  CAS  Google Scholar 

  • Reimers JR and Hush NS (2004) A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis. J Am Chem Soc 126: 4132–4144

    Article  PubMed  CAS  Google Scholar 

  • Rigby SEJ, Nugent JHA and O’Malley PJ (1994) ENDOR and special triple resonance studies of chlorophyll cation radicals in photosystem 2. Biochemistry 33: 10043–10050

    Article  PubMed  CAS  Google Scholar 

  • Rigby SEJ, Evans MCW and Heathcote P (2001) Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related type I photosynthetic reaction centres. Biochim Biophys Acta 1507: 247–259

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW and Sétif P (1990) Orientation of P700, the primary electron-donor of photosystem I. Biochim Biophys Acta 1019: 128–132

    Article  CAS  Google Scholar 

  • Scheer H, Katz JJ and Norris JR (1977) Proton–electron hyperfine coupling constants of the chlorophyll a cation radical by ENDOR spectroscopy. J Am Chem Soc 99: 1372–1381

    Article  CAS  Google Scholar 

  • Schweiger A and Jeschke G (2001) Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, Oxford

    Google Scholar 

  • Sieckmann I, Brettel K, Bock H, van der Est A and Stehlik D (1993) Transient electron paramagnetic resonance of the triplet state of P700 in photosystem I. Evidence for triplet delocalization at room temperature. Biochemistry 32: 4842–4847

    Article  PubMed  CAS  Google Scholar 

  • Sinnecker S, Koch W and Lubitz W (2002) Chlorophyll a radical ions: a density functional study. J Phys Chem B 106: 5281–5288

    Article  CAS  Google Scholar 

  • Stehlik D and Möbius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Annu Rev Phys Chem 48: 745–784

    Article  PubMed  CAS  Google Scholar 

  • Stone AJ (1963a) g-Factors of aromatic free radicals. Mol Phys 6: 509–515

    Article  CAS  Google Scholar 

  • Stone AJ (1963b) Gauge invariance of g-tensor. Proc R Soc Lond A 271: 424–424

    Article  Google Scholar 

  • Sun Y, Wang H, Zhao F and Sun J (2004) The effect of axial Mg2 + ligation and peripheral hydrogen bonding on chlorophyll a. Chem Phys Lett 387: 12–16

    Article  CAS  Google Scholar 

  • Thurnauer MC, Katz JJ and Norris JR (1975) The triplet state in bacterial photosynthesis: possible mechanisms of the primary photo-act. Proc Natl Acad Sci USA 72:3270–3274

    Article  PubMed  CAS  Google Scholar 

  • Vrieze J, Gast P and Hoff AJ (1996) Structure of the reaction center of photosystem I of plants. An investigation with linear-dichroic absorbance-detected magnetic resonance. J Phys Chem 100: 9960–9967

    Article  CAS  Google Scholar 

  • Wang R, Sivakumar V, Li Y, Redding K and Hastings G (2003) Mutation induced modulation of hydrogen bonding to P700 studied using FTIR difference spectroscopy. Biochemistry 42: 9889–9897

    Article  PubMed  CAS  Google Scholar 

  • Wasielewski MR, Norris JR, Crespi HL and Harper J (1981a) Photoinduced ESR signals from the primary electron donors in deuterated highly 13C enriched photosynthetic bacteria and algae. J Am Chem Soc 103: 7664–7665

    Article  CAS  Google Scholar 

  • Wasielewski MR, Norris JR, Shipman LL, Lin C-P and Svec WA (1981b) Monomeric chlorophyll a enol: evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis. Proc Natl Acad Sci USA 78: 2957–2961

    Article  CAS  Google Scholar 

  • Watanabe T and Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls, pp 287–315. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  • Webber AN and Lubitz W (2001) P700: the primary electron donor of photosystem I. Biochim Biophys Acta 1507: 61–79

    Article  PubMed  CAS  Google Scholar 

  • Webber AN, Su H, Bingham SE, Käss H, Krabben L, Kuhn M, Jordan R, Schlodder E and Lubitz W (1996) Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in photosystem I. Biochemistry 35: 12857–12863

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Müller A and Rumberg B (1961) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Schlodder E, Teutloff C, Niklas J, Bordignon E, Carbonera D, Kohler S, Labahn A and Lubitz W (2002) Hydrogen bonding to P700: site-directed mutagenesis of threonine A739 of photosystem I in Chlamydomonas reinhardtii. Biochemistry 41: 8557–8569

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Bordignon E, Carbonera D, Dekker JP, Karapetyan N, Teutloff C, Webber A, Lubitz W and Schlodder E (2003) Species specific differences of the spectroscopic properties of P700 –analysis of the influence of non-conserved amino acid residues investigated by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii. J Biol Chem 278: 46760–46771

    Article  PubMed  CAS  Google Scholar 

  • Zech S, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W and Bittl R (2000) A structural model for the charge separated state P700·+A1 ·− in photosystem I from the orientation of the magnetic interaction tensors. J Phys Chem B 104: 9728–9739

    Article  CAS  Google Scholar 

  • Zeng RH, van Tol J, Deal A, Frank HA and Budil DE (2003) Temperature dependence of the primary donor triplet state g-tensor in photosynthetic reaction centers of Rhodobacter sphaeroides R-26 observed by transient 240 GHz electron paramagnetic resonance. J Phys Chem B 107: 4624–4631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Lubitz, W. (2006). EPR Studies of the Primary Electron Donor P700 in Photosystem. In: Golbeck, J.H. (eds) Photosystem I. Advances in Photosynthesis and Respiration, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4256-0_17

Download citation

Publish with us

Policies and ethics