Skip to main content
Book cover

Oogenesis pp 109–126Cite as

The Quest for Oogenesis (Folliculogenesis) In Vitro

  • Chapter
  • First Online:
  • 2012 Accesses

Abstract

Because of the improvements in efficacy of cancer treatments, the rates of cancer survivors are constantly increasing; however some of these more aggressive anti-cancer therapies endanger fertility.

Although the use of classical Assisted reproduction techniques, like in vitro fertilisation (IVF) and embryo freezing/transfer (Frozen embryo transfer, FRET), are an option for certain adult patients, these techniques depend on the amount of oocytes obtained after controlled ovarian stimulation. This treatment is not suitable for children or adolescent patients, and potentially unsafe when using it in breast cancer patients. Therefore, adolescent and adult female cancer patients are being offered the possibility to cryopreserve pieces of their ovarian tissue with the ultimate goal of restoring their fertility when they are disease free.

Ovarian tissue grafting has proven successful, however the latent risk for reintroducing malignant cells, enforces the search for alternatives. In vitro culture of cryopreserved tissue, and of ovarian follicles isolated from this tissue, are challenging alternatives. Techniques for culturing ovarian tissue and follicles are under development and may benefit from advances in molecular techniques, innovative culture devices and artificial extracellular matrices.

This review focuses on state-of-the-art culturing techniques for ovarian follicles and reports on the most recent advances in the field in animal models and in human.

Sandra Sanfilippo is a visiting scientist from the Laboratoire de biologie du développement et de la reproduction, through a grant provided by Vitrolife (Convention Industrielle de Formation par la Recherche, CIFRE).

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-0-85729-826-3_23

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schmidt KT, Rosendahl M, Ernst E, Loft A, Andersen AN, Dueholm M, et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil Steril. 2011;95(2):695–701 [Evaluation Studies Multicenter Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  2. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116(16):2908–14 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  3. Newton H, Picton H, Gosden RG. In vitro growth of oocyte-granulosa cell complexes isolated from cryopreserved ovine tissue. J Reprod Fertil. 1999;115(1):141–50 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  4. Newton H, Illingworth P. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Hum Reprod. 2001;16(3):423–9.

    Article  PubMed  CAS  Google Scholar 

  5. Xu M, Banc A, Woodruff TK, Shea LD. Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol Bioeng. 2009;103(2):378–86 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  6. Castro SV, de Carvalho AA, da Silva CM, Faustino LR, Campello CC, Lucci CM, et al. Freezing solution containing dimethylsulfoxide and fetal calf serum maintains survival and ultrastructure of goat preantral follicles after cryopreservation and in vitro culture of ovarian tissue. Cell Tissue Res. 2011;346(2):283–92.

    Article  PubMed  CAS  Google Scholar 

  7. Dorphin B, Prades-Borio M, Anastacio A, Rojat P, Coussieu C, Poirot C. Secretion profiles from in vitro cultured follicles, isolated from fresh prepubertal and adult mouse ovaries or frozen-thawed prepubertal mouse ovaries. Zygote. 2011;11:1–12.

    Google Scholar 

  8. Ting AY, Yeoman RR, Lawson MS, Zelinski MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate freeze or vitrification. Hum Reprod. 2011;26(9):2461–72 [Research Support, N.I.H., Extramural].

    Article  PubMed  Google Scholar 

  9. Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16(4):395–414 [Research Support, N.I.H., Extramural Review].

    Article  PubMed  CAS  Google Scholar 

  10. Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J Cell Sci. 2007;120(Pt 8):1330–40 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  11. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  12. Zlotkin T, Farkash Y, Orly J. Cell-specific expression of immunoreactive cholesterol side-chain cleavage cytochrome P-450 during follicular development in the rat ovary. Endocrinology. 1986;119(6):2809–20 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  13. Ishimura K, Yoshinaga-Hirabayashi T, Tsuri H, Fujita H, Osawa Y. Further immunocytochemical study on the localization of aromatase in the ovary of rats and mice. Histochemistry. 1989;90(6):413–6 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S].

    Article  PubMed  CAS  Google Scholar 

  14. Vanderhyden BC, Cohen JN, Morley P. Mouse oocytes regulate granulosa cell steroidogenesis. Endocrinology. 1993;133(1):423–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  15. Henderson KM, Moon YS. Luteinization of bovine granulosa cells and corpus luteum formation associated with loss of androgen-aromatizing ability. J Reprod Fertil. 1979;56(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  16. Diaz FJ, Wigglesworth K, Eppig JJ. Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice. Dev Biol. 2007;305(1):300–11 [Comparative Study Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  17. Mintz B. Embryological phases of mammalian gametogenesis. J Cell Comp Physiol. 1960;56:31–47.

    Article  PubMed  Google Scholar 

  18. Mandl AM. Pre-ovulatory changes in the oocyte of the adult rat. Proc R Soc Lond B Biol Sci. 1963;158(970):105–18.

    Article  Google Scholar 

  19. Byskov AG. Differentiation of mammalian embryonic gonad. Physiol Rev. 1986;66(1):71–117.

    PubMed  CAS  Google Scholar 

  20. Szybek K. In-vitro maturation of oocytes from sexually immature mice. J Endocrinol. 1972;54(3):527–8.

    Article  PubMed  CAS  Google Scholar 

  21. Durinzi KL, Saniga EM, Lanzendorf SE. The relationship between size and maturation in vitro in the unstimulated human oocyte. Fertil Steril. 1995;63(2):404–6.

    PubMed  CAS  Google Scholar 

  22. Ducibella T, Buetow J. Competence to undergo normal, fertilization-induced cortical activation develops after metaphase I of meiosis in mouse oocytes. Dev Biol. 1994;165(1):95–104.

    Article  PubMed  CAS  Google Scholar 

  23. Ducibella T. The cortical reaction and development of activation competence in mammalian oocytes. Hum Reprod Update. 1996;2(1):29–42.

    Article  PubMed  CAS  Google Scholar 

  24. Eppig JJ, O’Brien MJ, Pendola FL, Watanabe S. Factors affecting the developmental competence of mouse oocytes grown in vitro: follicle-stimulating hormone and insulin. Biol Reprod. 1998;59(6):1445–53.

    Article  PubMed  CAS  Google Scholar 

  25. Abbott AL, Fissore RA, Ducibella T. Identification of a translocation deficiency in cortical granule secretion in preovulatory mouse oocytes. Biol Reprod. 2001;65(6):1640–7.

    Article  PubMed  CAS  Google Scholar 

  26. Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17(2):324–32.

    Article  PubMed  CAS  Google Scholar 

  27. Ajduk A, Malagocki A, Maleszewski M. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reprod Biol. 2008;8(1):3–22.

    Article  PubMed  Google Scholar 

  28. Abbott AL, Ducibella T. Calcium and the control of mammalian cortical granule exocytosis. Front Biosci. 2001;6:D792–806 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  29. Smitz JE, Cortvrindt RG. The earliest stages of folliculogenesis in vitro. Reproduction. 2002;123(2):185–202.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida H, Takakura N, Kataoka H, Kunisada T, Okamura H, Nishikawa SI. Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev Biol. 1997;184(1):122–37.

    Article  PubMed  CAS  Google Scholar 

  31. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5(3):143–52.

    Article  PubMed  CAS  Google Scholar 

  32. Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-mullerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.

    Article  PubMed  CAS  Google Scholar 

  33. Abir R, Roizman P, Fisch B, Nitke S, Okon E, Orvieto R, et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod. 1999;14(5):1299–301.

    Article  PubMed  CAS  Google Scholar 

  34. Abir R, Fisch B, Nitke S, Okon E, Raz A, Ben Rafael Z. Morphological study of fully and partially isolated early human follicles. Fertil Steril. 2001;75(1):141–6 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  35. Miyano T. Bringing up small oocytes to eggs in pigs and cows. Theriogenology. 2003;59(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  36. Muruvi W, Picton HM, Rodway RG, Joyce IM. In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology. 2005;64(6):1357–70.

    Article  PubMed  CAS  Google Scholar 

  37. Vanacker J, Camboni A, Dath C, Van Langendonckt A, Dolmans MM, Donnez J, et al. Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil Steril. 2011;96(2):379–83.e3.

    Article  PubMed  CAS  Google Scholar 

  38. Hovatta O, Wright C, Krausz T, Hardy K, Winston RM. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod. 1999;14(10):2519–24.

    Article  PubMed  CAS  Google Scholar 

  39. Honda A, Hirose M, Hara K, Matoba S, Inoue K, Miki H, et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci USA. 2007;104(30):12389–94.

    Article  PubMed  CAS  Google Scholar 

  40. Honda A, Hirose M, Inoue K, Hiura H, Miki H, Ogonuki N, et al. Large-scale production of growing oocytes in vitro from neonatal mouse ovaries. Int J Dev Biol. 2009;53(4):605–13.

    Article  PubMed  CAS  Google Scholar 

  41. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54(1):197–207.

    Article  PubMed  CAS  Google Scholar 

  42. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68(5):1682–6.

    Article  PubMed  CAS  Google Scholar 

  43. Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and ­initiates folliculogenesis. Endocrinology. 1999;140(9):4262–71.

    Article  PubMed  CAS  Google Scholar 

  44. Sadeu JC, Adriaenssens T, Smitz J. Expression of growth differentiation factor 9, bone morphogenetic protein 15, and anti-mullerian hormone in cultured mouse primary follicles. Reproduction. 2008;136(2):195–203.

    Article  PubMed  CAS  Google Scholar 

  45. Fortune JE, Kito S, Wandji SA, Srsen V. Activation of bovine and baboon primordial follicles in vitro. Theriogenology. 1998;49(2):441–9.

    Article  PubMed  CAS  Google Scholar 

  46. Gigli I, Byrd DD, Fortune JE. Effects of oxygen tension and supplements to the culture medium on activation and development of bovine follicles in vitro. Theriogenology. 2006;66(2):344–53.

    Article  PubMed  CAS  Google Scholar 

  47. McLaughlin M, Telfer EE. Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction. 2010;139(6):971–8.

    Article  PubMed  CAS  Google Scholar 

  48. Hovatta O, Silye R, Abir R, Krausz T, Winston RM. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12(5):1032–6 [Comparative Study].

    Article  PubMed  CAS  Google Scholar 

  49. Carlsson IB, Scott JE, Visser JA, Ritvos O, Themmen AP, Hovatta O. Anti-mullerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod. 2006;21(9):2223–7.

    Article  PubMed  CAS  Google Scholar 

  50. Sadeu JC, Smitz J. Growth differentiation factor-9 and anti-mullerian hormone expression in cultured human follicles from frozen-thawed ovarian tissue. Reprod Biomed Online. 2008;17(4):537–48.

    Article  PubMed  CAS  Google Scholar 

  51. Telfer EE, McLaughlin M, Ding C, Thong KJ. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod. 2008;23(5):1151–8.

    Article  PubMed  CAS  Google Scholar 

  52. Silva JR, van den Hurk R, Costa SH, Andrade ER, Nunes AP, Ferreira FV, et al. Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim Reprod Sci. 2004;81(3–4):273–86.

    Article  PubMed  Google Scholar 

  53. Murray AA, Molinek MD, Baker SJ, Kojima FN, Smith MF, Hillier SG, et al. Role of ascorbic acid in promoting follicle integrity and survival in intact mouse ovarian follicles in vitro. Reproduction. 2001;121(1):89–96 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  54. Thomas FH, Leask R, Srsen V, Riley SC, Spears N, Telfer EE. Effect of ascorbic acid on health and morphology of bovine preantral follicles during long-term culture. Reproduction. 2001;122(3):487–95 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  55. Rossetto R, Lima-Verde IB, Matos MH, Saraiva MV, Martins FS, Faustino LR, et al. Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles. Domest Anim Endocrinol. 2009;37(2):112–23 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  56. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1(2):81–7.

    PubMed  CAS  Google Scholar 

  57. Jin SY, Lei L, Shikanov A, Shea LD, Woodruff TK. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil Steril. 2010;93(8):2633–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  Google Scholar 

  58. Wandji SA, Srsen V, Voss AK, Eppig JJ, Fortune JE. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod. 1996;55(5):942–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  59. Wandji SA, Srsen V, Nathanielsz PW, Eppig JJ, Fortune JE. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod. 1997;12(9):1993–2001 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  60. Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121(5):647–53 [Review].

    Article  PubMed  CAS  Google Scholar 

  61. Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11(5):461–71.

    Article  PubMed  Google Scholar 

  62. Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol. 2001;175(1–2):123–30.

    Article  PubMed  CAS  Google Scholar 

  63. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol. 2002;188(1–2):65–73.

    Article  PubMed  CAS  Google Scholar 

  64. Nilsson EE, Skinner MK. Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biol Reprod. 2002;67(3):1018–24.

    Article  PubMed  CAS  Google Scholar 

  65. Fortune JE. The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim Reprod Sci. 2003;78(3–4):135–63 [Review].

    Article  PubMed  CAS  Google Scholar 

  66. Nilsson EE, Skinner MK. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod. 2003;69(4):1265–72.

    Article  PubMed  CAS  Google Scholar 

  67. Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol. 2004;214(1–2):19–25.

    Article  PubMed  CAS  Google Scholar 

  68. Kezele P, Nilsson EE, Skinner MK. Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod. 2005;73(5):967–73.

    Article  PubMed  CAS  Google Scholar 

  69. Nilsson EE, Detzel C, Skinner MK. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131(6):1007–15.

    Article  PubMed  CAS  Google Scholar 

  70. Martins FS, Celestino JJ, Saraiva MV, Matos MH, Bruno JB, Rocha-Junior CM, et al. Growth and differentiation factor-9 stimulates activation of goat ­primordial follicles in vitro and their progression to secondary follicles. Reprod Fertil Dev. 2008;20(8):916–24.

    Article  PubMed  CAS  Google Scholar 

  71. da Nobrega JE, Goncalves PB, Chaves RN, Magalhaes DD, Rossetto R, Lima-Verde IB, et al. Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro. Zygote. 2011;18:1–6.

    Google Scholar 

  72. Ding CC, Thong KJ, Krishna A, Telfer EE. Activin A inhibits activation of human primordial follicles in vitro. J Assist Reprod Genet. 2010;27(4):141–7 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  73. Kedem A, Fisch B, Garor R, Ben-Zaken A, Gizunterman T, Felz C, et al. Growth differentiating factor 9 (GDF9) and bone morphogenetic protein 15 both activate development of human primordial follicles in vitro, with seemingly more beneficial effects of GDF9. J Clin Endocrinol Metab. 2011;96(8):E1246–54 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  74. Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64.

    Article  PubMed  CAS  Google Scholar 

  75. Liu K, Rajareddy S, Liu L, Jagarlamudi K, Boman K, Selstam G, et al. Control of mammalian oocyte growth and early follicular development by the oocyte PI3 kinase pathway: new roles for an old timer. Dev Biol. 2006;299(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  76. Reddy P, Shen L, Ren C, Boman K, Lundin E, Ottander U, et al. Activation of Akt (PKB) and suppression of FKHRL1 in mouse and rat oocytes by stem cell factor during follicular activation and development. Dev Biol. 2005;281(2):160–70.

    Article  PubMed  CAS  Google Scholar 

  77. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.

    Article  PubMed  CAS  Google Scholar 

  78. Liu K. Stem cell factor (SCF)-kit mediated phosphatidylinositol 3 (PI3) kinase signaling during mammalian oocyte growth and early follicular development. Front Biosci. 2006;11:126–35.

    Article  PubMed  Google Scholar 

  79. Arden KC, Biggs 3rd WH. Regulation of the FoxO family of transcription factors by phosphatidylinositol-3 kinase-activated signaling. Arch Biochem Biophys. 2002;403(2):292–8.

    Article  PubMed  CAS  Google Scholar 

  80. Thomas FH, Ismail RS, Jiang JY, Vanderhyden BC. Kit ligand 2 promotes murine oocyte growth in vitro. Biol Reprod. 2008;78(1):167–75.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang P, Chao H, Sun X, Li L, Shi Q, Shen W. Murine folliculogenesis in vitro is stage-specifically regulated by insulin via the Akt signaling pathway. Histochem Cell Biol. 2010;134(1):75–82.

    Article  PubMed  CAS  Google Scholar 

  82. Louhio H, Hovatta O, Sjoberg J, Tuuri T. The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod. 2000;6(8):694–8.

    Article  PubMed  CAS  Google Scholar 

  83. Wright CS, Hovatta O, Margara R, Trew G, Winston RM, Franks S, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14(6):1555–62.

    Article  PubMed  CAS  Google Scholar 

  84. Li J, Kawamura K, Cheng Y, Liu S, Klein C, Duan EK, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA. 2010;107(22):10280–4.

    Article  PubMed  CAS  Google Scholar 

  85. Matos MH, Bruno JB, Rocha RM, Lima-Verde IB, Santos KD, Saraiva MV, et al. In vitro development of primordial follicles after long-term culture of goat ovarian tissue. Res Vet Sci. 2011;90(3):404–11.

    Article  PubMed  CAS  Google Scholar 

  86. Fortune JE, Kito S, Byrd DD. Activation of primordial follicles in vitro. J Reprod Fertil Suppl. 1999;54:439–48.

    PubMed  CAS  Google Scholar 

  87. Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab. 1997;82(11):3748–51.

    Article  PubMed  CAS  Google Scholar 

  88. Massague J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14(6):627–44.

    PubMed  CAS  Google Scholar 

  89. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143(3):1076–84.

    Article  PubMed  CAS  Google Scholar 

  90. Schmidt KL, Kryger-Baggesen N, Byskov AG, Andersen CY. Anti-mullerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol. 2005;234(1–2):87–93.

    Article  PubMed  CAS  Google Scholar 

  91. Hreinsson JG, Scott JE, Rasmussen C, Swahn ML, Hsueh AJ, Hovatta O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab. 2002;87(1):316–21.

    Article  PubMed  CAS  Google Scholar 

  92. Wang J, Roy SK. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone. Biol Reprod. 2004;70(3):577–85.

    Article  PubMed  CAS  Google Scholar 

  93. Lee WS, Yoon SJ, Yoon TK, Cha KY, Lee SH, Shimasaki S, et al. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev. 2004;69(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  94. Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Cook RW, Kipp JL, et al. Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool. Dev Biol. 2006;298(1):132–48 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  95. Hulshof SC, Figueiredo JR, Beckers JF, Bevers MM, Vanderstichele H, van den Hurk R. Bovine preantral follicles and activin: immunohistochemistry for activin and activin receptor and the effect of bovine activin A in vitro. Theriogenology. 1997;48(1):133–42.

    Article  PubMed  CAS  Google Scholar 

  96. Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction. 2001;121(1):51–75 [Review].

    Article  PubMed  CAS  Google Scholar 

  97. Kim DH, Ko DS, Lee HC, Lee HJ, Park WI, Kim SS, et al. Comparison of maturation, fertilization, development, and gene expression of mouse oocytes grown in vitro and in vivo. J Assist Reprod Genet. 2004;21(7):233–40 [Comparative Study].

    Article  PubMed  Google Scholar 

  98. Combelles CM, Fissore RA, Albertini DF, Racowsky C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum Reprod. 2005;20(5):1349–58 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  99. Eppig JJ, O’Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA. Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum Reprod. 2009;24(4):922–8 [In Vitro Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  100. Eppig JJ, Pendola FL, Wigglesworth K. Mouse oocytes suppress cAMP-induced expression of LH receptor mRNA by granulosa cells in vitro. Mol Reprod Dev. 1998;49(3):327–32 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  101. Latham KE, Bautista FD, Hirao Y, O’Brien MJ, Eppig JJ. Comparison of protein synthesis patterns in mouse cumulus cells and mural granulosa cells: effects of follicle-stimulating hormone and insulin on granulosa cell differentiation in vitro. Biol Reprod. 1999;61(2):482–92 [Comparative Study Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  102. Eppig JJ, Hosoe M, O’Brien MJ, Pendola FM, Requena A, Watanabe S. Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid. Mol Cell Endocrinol. 2000;163(1–2):109–16 [In Vitro Research Support, U.S. Gov’t, P.H.S. Review].

    Article  PubMed  CAS  Google Scholar 

  103. Sánchez F, Adriaenssens T, Romero S, Smitz J. Different follicle-stimulating hormone exposure regimens during antral follicle growth alter gene expression in the cumulus-oocyte complex in mice. Biol Reprod. 2010;83(4):514–24 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  104. Sanchez F, Romero S, Smitz J. Oocyte and cumulus cell transcripts from cultured mouse follicles are induced to deviate from normal in vivo condition by combinations of insulin, follicle-stimulating hormone, and human chorionic gonadotropin. Biol Reprod. 2011;85:565–74.

    Article  PubMed  CAS  Google Scholar 

  105. Lenie S, Cortvrindt R, Adriaenssens T, Smitz J. A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units. Biol Reprod. 2004;71(5):1730–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  106. Muruvi W, Picton HM, Rodway RG, Joyce IM. In vitro growth and differentiation of primary follicles isolated from cryopreserved sheep ovarian tissue. Anim Reprod Sci. 2009;112(1–2):36–50 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  107. Cortvrindt R, Smitz J, Van Steirteghem AC. In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepuberal mice in a simplified culture system. Hum Reprod. 1996;11(12):2656–66 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  108. Cortvrindt RG, Smitz JE. Follicle culture in reproductive toxicology: a tool for in-vitro testing of ­ovarian function? Hum Reprod Update. 2002;8(3):243–54 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  109. Nayudu PL, Osborn SM. Factors influencing the rate of preantral and antral growth of mouse ovarian follicles in vitro. J Reprod Fertil. 1992;95(2):349–62 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  110. Murray AA, Gosden RG, Allison V, Spears N. Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil. 1998;113(1):27–33 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  111. Rose UM, Hanssen RG, Kloosterboer HJ. Development and characterization of an in vitro ovulation model using mouse ovarian follicles. Biol Reprod. 1999;61(2):503–11.

    Article  PubMed  CAS  Google Scholar 

  112. Murray AA, Swales AK, Smith RE, Molinek MD, Hillier SG, Spears N. Follicular growth and oocyte competence in the in vitro cultured mouse follicle: effects of gonadotrophins and steroids. Mol Hum Reprod. 2008;14(2):75–83 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  113. Boland NI, Humpherson PG, Leese HJ, Gosden RG. Pattern of lactate production and steroidogenesis during growth and maturation of mouse ovarian follicles in vitro. Biol Reprod. 1993;48(4):798–806 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  114. Spears N, Boland NI, Murray AA, Gosden RG. Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod. 1994;9(3):527–32 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  115. Johnson LD, Albertini DF, McGinnis LK, Biggers JD. Chromatin organization, meiotic status and meiotic competence acquisition in mouse oocytes from cultured ovarian follicles. J Reprod Fertil. 1995;104(2):277–84 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  116. Carroll J, Whittingham DG, Wood MJ. Effect of dibutyryl cyclic adenosine monophosphate on granulosa cell proliferation, oocyte growth and meiotic maturation in isolated mouse primary ovarian follicles cultured in collagen gels. J Reprod Fertil. 1991;92(1):197–207 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  117. Hulshof SC, Figueiredo JR, Beckers JF, Bevers MM, van der Donk JA, van den Hurk R. Effects of fetal bovine serum, FSH and 17beta-estradiol on the culture of bovine preantral follicles. Theriogenology. 1995;44(2):217–26.

    Article  PubMed  CAS  Google Scholar 

  118. Sharma GT, Dubey PK, Meur SK. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system. Anim Reprod Sci. 2009;114(1–3):115–24 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  119. Pangas SA, Saudye H, Shea LD, Woodruff TK. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 2003;9(5):1013–21 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  120. Xu M, West E, Shea LD, Woodruff TK. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod. 2006;75(6):916–23 [In Vitro Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  121. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439–48 [In Vitro Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  122. Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod. 2009;24(10):2531–40 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  123. Xu M, West-Farrell ER, Stouffer RL, Shea LD, Woodruff TK, Zelinski MB. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol Reprod. 2009;81(3):587–94 [Evaluation Studies Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  124. West-Farrell ER, Xu M, Gomberg MA, Chow YH, Woodruff TK, Shea LD. The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol Reprod. 2009;80(3):432–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  125. Shikanov A, Xu M, Woodruff TK, Shea LD. A method for ovarian follicle encapsulation and culture in a proteolytically degradable 3 dimensional system. J Vis Exp. 2011;2011 [Research Support, N.I.H., Extramural Video-Audio Media].

    Google Scholar 

  126. Fehrenbach A, Nusse N, Nayudu PL. Patterns of growth, oestradiol and progesterone released by in vitro cultured mouse ovarian follicles indicate consecutive selective events during follicle development. J Reprod Fertil. 1998;113(2):287–97 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  127. Vitt UA, Kloosterboer HJ, Rose UM, Mulders JW, Kiesel PS, Bete S, et al. Isoforms of human recombinant follicle-stimulating hormone: comparison of effects on murine follicle development in vitro. Biol Reprod. 1998;59(4):854–61 [Comparative Study In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  128. Sánchez F, Romero S, Albuz FK, Smitz J. In vitro follicle growth under non-attachment conditions and decreased FSH levels reduces Lhcgr expression in cumulus cells and promotes oocyte developmental competence. J Assist Reprod Genet. 2012;29(2):141–52.

    Article  PubMed  Google Scholar 

  129. Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  130. Smitz J, Cortvrindt R, Hu Y. Epidermal growth factor combined with recombinant human chorionic gonadotrophin improves meiotic progression in mouse follicle-enclosed oocyte culture. Hum Reprod. 1998;13(3):664–9 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  131. Smitz J, Cortvrindt R, Hu Y, Vanderstichele H. Effects of recombinant activin A on in vitro culture of mouse preantral follicles. Mol Reprod Dev. 1998;50(3):294–304 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  132. Vitt UA, Nayudu PL, Rose UM, Kloosterboer HJ. Embryonic development after follicle culture is influenced by follicle-stimulating hormone isoelectric point range. Biol Reprod. 2001;65(5):1542–7 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  133. Bishonga C, Takahashi Y, Katagiri S, Nagano M, Ishikawa A. In vitro growth of mouse ovarian preantral follicles and the capacity of their oocytes to develop to the blastocyst stage. J Vet Med Sci. 2001;63(6):619–24 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  134. Mousset-Simeon N, Jouannet P, Le Cointre L, Coussieu C, Poirot C. Comparison of three in vitro culture systems for maturation of early preantral mouse ovarian follicles. Zygote. 2005;13(2):167–75 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  135. Cortvrindt RG, Hu Y, Liu J, Smitz JE. Timed analysis of the nuclear maturation of oocytes in early preantral mouse follicle culture supplemented with recombinant gonadotropin. Fertil Steril. 1998;70(6):1114–25 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  136. Zuccotti M, Merico V, Redi CA, Bellazzi R, Adjaye J, Garagna S. Role of Oct-4 during acquisition of developmental competence in mouse oocyte. Reprod Biomed Online. 2009;19 Suppl 3:57–62 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  137. De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol. 2004;275(2):447–58 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  Google Scholar 

  138. De La Fuente R, Eppig JJ. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol. 2001;229(1):224–36 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  Google Scholar 

  139. Segers I, Adriaenssens T, Ozturk E, Smitz J. Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil Steril. 2010;93(8):2695–700 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  140. Abir R, Franks S, Mobberley MA, Moore PA, Margara RA, Winston RM. Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril. 1997;68(4):682–8 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  141. Cortvrindt R, Smitz J, Van Steirteghem AC. Assessment of the need for follicle stimulating hormone in early preantral mouse follicle culture in vitro. Hum Reprod. 1997;12(4):759–68 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  142. Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19(2):398–408 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  143. Cortvrindt R, Hu Y, Smitz J. Recombinant luteinizing hormone as a survival and differentiation factor increases oocyte maturation in recombinant follicle stimulating hormone-supplemented mouse preantral follicle culture. Hum Reprod. 1998;13(5):1292–302 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  144. Schroeder AC, Schultz RM, Kopf GS, Taylor FR, Becker RB, Eppig JJ. Fetuin inhibits zona pellucida hardening and conversion of ZP2 to ZP2f during spontaneous mouse oocyte maturation in vitro in the absence of serum. Biol Reprod. 1990;43(5):891–7 [Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  145. Mao J, Smith MF, Rucker EB, Wu GM, McCauley TC, Cantley TC, et al. Effect of epidermal growth factor and insulin-like growth factor I on porcine preantral follicular growth, antrum formation, and stimulation of granulosal cell proliferation and suppression of apoptosis in vitro. J Anim Sci. 2004;82(7):1967–75 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  146. Demeestere I, Gervy C, Centner J, Devreker F, Englert Y, Delbaere A. Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice. Biol Reprod. 2004;70(6):1664–9 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  147. Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA. 2004;101(31):11209–14 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  148. Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci USA. 2006;103(1):224–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  149. Spears N, Murray AA, Allison V, Boland NI, Gosden RG. Role of gonadotrophins and ovarian steroids in the development of mouse follicles in vitro. J Reprod Fertil. 1998;113(1):19–26 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  150. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest. 1998;101(12):2622–9.

    Article  PubMed  CAS  Google Scholar 

  151. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84(8):2951–6.

    Article  PubMed  CAS  Google Scholar 

  152. Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod. 2006;75(6):924–32 [In Vitro Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  153. Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009;80(4):685–95 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  154. Andersen CY, Ziebe S. Serum levels of free androstenedione, testosterone and oestradiol are lower in the follicular phase of conceptional than of non-conceptional cycles after ovarian stimulation with a gonadotrophin-releasing hormone agonist protocol. Hum Reprod. 1992;7(10):1365–70 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  155. Tetsuka M, Hillier SG. Differential regulation of aromatase and androgen receptor in granulosa cells. J Steroid Biochem Mol Biol. 1997;61(3–6):233–9 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  156. Couse JF, Yates MM, Deroo BJ, Korach KS. Estrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology. 2005;146(8):3247–62.

    Article  PubMed  CAS  Google Scholar 

  157. Romero S, Smitz J. Exposing cultured mouse ovarian follicles under increased gonadotropin tonus to aromatizable androgens influences the steroid balance and reduces oocyte meiotic capacity. Endocrine. 2010;38(2):243–53.

    Article  PubMed  CAS  Google Scholar 

  158. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science. 2004;303(5658):682–4.

    Article  PubMed  CAS  Google Scholar 

  159. Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology. 2005;146(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  160. Yamashita Y, Kawashima I, Yanai Y, Nishibori M, Richards JS, Shimada M. Hormone-induced expression of tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloprotease-17 impacts porcine cumulus cell oocyte complex expansion and meiotic maturation via ligand activation of the epidermal growth factor receptor. Endocrinology. 2007;148(12):6164–75 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  161. Fru KN, Cherian-Shaw M, Puttabyatappa M, VandeVoort CA, Chaffin CL. Regulation of granulosa cell proliferation and EGF-like ligands during the periovulatory interval in monkeys. Hum Reprod. 2007;22(5):1247–52 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  162. Freimann S, Ben-Ami I, Dantes A, Ron-El R, Amsterdam A. EGF-like factor epiregulin and amphiregulin expression is regulated by gonadotropins/cAMP in human ovarian follicular cells. Biochem Biophys Res Commun. 2004;324(2):829–34 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  163. Su YQ, Sugiura K, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ. Mouse oocytes enable LH-induced maturation of the cumulus-oocyte complex via promoting EGF receptor-dependent signaling. Mol Endocrinol. 2010;24(6):1230–9.

    Article  PubMed  CAS  Google Scholar 

  164. Romero S, Sanchez F, Adriaenssens T, Smitz J. Mouse cumulus-oocyte complexes from in vitro-cultured preantral follicles suggest an anti-luteinizing role for the EGF cascade in the cumulus cells. Biol Reprod. 2011;84(6):1164–70 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  165. Nogueira D, Staessen C, Van de Velde H, Van Steirteghem A. Nuclear status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril. 2000;74(2):295–8 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  166. Fadini R, Comi R, Mignini Renzini M, Coticchio G, Crippa M, De Ponti E, et al. Anti-mullerian hormone as a predictive marker for the selection of women for oocyte in vitro maturation treatment. J Assist Reprod Genet. 2011;28(6):501–8.

    Article  PubMed  Google Scholar 

  167. Smitz JE, Thompson JG, Gilchrist RB. The promise of in vitro maturation in assisted reproduction and fertility preservation. Semin Reprod Med. 2011;29(1):24–37 [Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  CAS  Google Scholar 

  168. Nogueira D, Cortvrindt R, De Matos DG, Vanhoutte L, Smitz J. Effect of phosphodiesterase type 3 inhibitor on developmental competence of immature mouse oocytes in vitro. Biol Reprod. 2003;69(6):2045–52 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  169. Vanhoutte L, Nogueira D, Gerris J, Dhont M, De Sutter P. Effect of temporary nuclear arrest by phosphodiesterase 3-inhibitor on morphological and functional aspects of in vitro matured mouse oocytes. Mol Reprod Dev. 2008;75(6):1021–30 [In Vitro Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  170. Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation. Dev Biol. 2002;244(2):215–25 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  171. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod. 2010;25(12):2999–3011 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  172. Nogueira D, Albano C, Adriaenssens T, Cortvrindt R, Bourgain C, Devroey P, et al. Human oocytes reversibly arrested in prophase I by phosphodiesterase type 3 inhibitor in vitro. Biol Reprod. 2003;69(3):1042–52 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  173. Nogueira D, Ron-El R, Friedler S, Schachter M, Raziel A, Cortvrindt R, et al. Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human oocytes and allows subsequent embryonic development. Biol Reprod. 2006;74(1):177–84 [In Vitro].

    Article  PubMed  CAS  Google Scholar 

  174. Vanhoutte L, De Sutter P, Nogueira D, Gerris J, Dhont M, Van der Elst J. Nuclear and cytoplasmic maturation of in vitro matured human oocytes after temporary nuclear arrest by phosphodiesterase 3-inhibitor. Hum Reprod. 2007;22(5):1239–46 [Evaluation Studies Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  175. Shu YM, Zeng HT, Ren Z, Zhuang GL, Liang XY, Shen HW, et al. Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes. Hum Reprod. 2008;23(3):504–13 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Belgian Foundation Against Cancer (Project No. 221.2008).

Agentschap voor Innovatie door Wetenschap en Technologie (Project No. 70719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Smitz M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Romero, S., Sanfilippo, S., Smitz, J. (2013). The Quest for Oogenesis (Folliculogenesis) In Vitro. In: Coticchio, G., Albertini, D., De Santis, L. (eds) Oogenesis. Springer, London. https://doi.org/10.1007/978-0-85729-826-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-826-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-825-6

  • Online ISBN: 978-0-85729-826-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics