Skip to main content

Differential Game-Theoretic Approach to a Spatial Jamming Problem

  • Chapter
  • First Online:

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 12))

Abstract

In this work, we investigate the effect of an aerial jamming attack on the communication network of a team of UAVs flying in a formation. We propose a communication and motion model for the UAVs. The communication model provides a relation in the spatial domain for effective jamming by an aerial intruder. We formulate the problem as a zero-sum pursuit-evasion game. In our earlier work, we used Isaacs’ approach to obtain motion strategies for a pair of UAVs to evade the jamming attack. We also provided motion strategies for an aerial intruder to jam the communication between a pair of UAVs. In this work, we extend the analysis to multiple jammers and multiple UAVs flying in a formation. We analyze the problem in the framework of differential game theory, and provide analytical and approximate techniques to compute non-singular motion strategies of the UAVs.

This work was supported in part by a grant from AFOSR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd ed. SIAM Series in Classics in Applied Mathematics, Philadelphia (1999)

    MATH  Google Scholar 

  2. Bhattacharya, S., Başar, T.: Game-theoretic analysis of an aerial jamming attack on a UAV communication network. In: Proceedings of the American Control Conference, pp. 818–823. Baltimore, Maryland (2010)

    Google Scholar 

  3. Bhattacharya, S., Başar, T.: Graph-theoretic approach to connectivity maintenance in mobile networks in the presence of a jammer. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3560–3565. Atlanta (2010)

    Google Scholar 

  4. Bhattacharya, S., Başar, T.: Optimal strategies to evade jamming in heterogeneous mobile networks. Autonomous Robots, 31(4), 367–381 (2011)

    Article  Google Scholar 

  5. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge, U.K., 1993.

    Google Scholar 

  6. Breakwell, J.V., Hagedorn, P.: Point capture of two evaders in succession. J. Optim. Theory Appl. 27, 89–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cagalj, M., Capcun, S., Hubaux, J.P.: Wormhole-based anti-jamming techniques in sensor networks. IEEE Trans. Mobile Comput. 6, 100–114 (2007)

    Article  Google Scholar 

  8. Chen, L.: On selfish and malicious behaviours in wireless networks – a non-cooperative game theoretic approach. PhD Thesis. Ecole Nationale Superieure des Telecommunications, Paris (2008)

    Google Scholar 

  9. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1976)

    Article  MathSciNet  Google Scholar 

  10. Ding, X.C., Rahmani, A., Egerstedt, M.: Optimal multi-UAV convoy protection. Conf. Robot Commun. Config. 9, 1–6 (2009)

    Google Scholar 

  11. Elliott, R.J., Kalton, N.J.: Boundary value problems for nonlinear partial differential operators. J. Math. Anal. Appl. 46, 228–241 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, R.J., Kalton, N.J.: Cauchy problems for certain Isaacs–Bellman equations and games of survival. Trans. Am. Math. Soc. 198, 45–72 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 9, 1465–1474 (2004)

    Article  MathSciNet  Google Scholar 

  15. Fleming, W.: The Cauchy problem for degenerate parabolic equations. J. Math. Mech. 13, 987–1008 (1964)

    MathSciNet  MATH  Google Scholar 

  16. Fleming, W.H.: The convergence problem for differential games. Ann. Math. 52, 195–210 (1964) [Princeton University Press, Princeton]

    Google Scholar 

  17. Friedman, A.: Differential Games. Wiley, New York (1971)

    MATH  Google Scholar 

  18. Hagedorn, P., Breakwell, J.V.: A differential game of approach with two pursuers and one evader. J. Optim. Theory Appl. 18, 15–29 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isaacs, R.: Differential Games. Wiley, New York (1965)

    MATH  Google Scholar 

  20. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  21. Krassovski, N., Subbottin, A.: Jeux Differentiels. Mir Press, Moscow (1977)

    Google Scholar 

  22. Levchenkov, A.Y., Pashkov, A.G.: Differential game of optimal approach of two inertial pursuers to a noninertial evader. J. Optim. Theory Appl. 65, 501–518 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewin, J.: Differential Games: Theory and Methods for Solving Game Problems with Singular Surfaces. Springer, London (1994)

    Google Scholar 

  24. Lions, P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Pitman, Boston (1982)

    MATH  Google Scholar 

  25. Mesbahi, M.: On state-dependent dynamic graphs and their controllability properties. IEEE Trans. Autom. Control 50, 387–392 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mitchell, I.M., Tomlin, C.J.: Overapproximating reachable sets by Hamilton–Jacobi projections. J. Sci. Comput. 19, 323–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noubir, G., Lin, G.: Low power denial of service attacks in data wireless lans and countermeasures, ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 29–30 (2003)

    Article  Google Scholar 

  28. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time delay. IEEE Trans. Autom. Control, 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  29. Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks In: Proceedings of SCS Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS 2002), San Antonio, Texas, 1, 27–31 (2002)

    Google Scholar 

  30. Pashkov, A.G., Terekhov, S.D.: A differential game of approach with two pursuers and one evader. J. Optim. Theory Appl. 55, 303–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pavone, M., Savla, K., Frazzoli, E.: Sharing the load: mobile robotic networks in dynamic environments. IEEE Robot. Autom. Mag. 16, 52–61 (2009)

    Article  Google Scholar 

  32. Poisel, R.A.: Modern Communication Jamming Principles and Techniques. Artech, Norwood (2004)

    Google Scholar 

  33. Proakis, J.J., Salehi, M.: Digital Communications. McGraw-Hill, New York (2007)

    Google Scholar 

  34. Samad, T., Bay, J.S., Godbole, D.: Network-centric systems for military operations in urban terrian: the role of UAVs. Proc. IEEE, 95(1), 92–107 (2007)

    Article  Google Scholar 

  35. Shankaran, S., Stipanović, D., Tomlin, C.: Collision avoidance strategies for a three player game. In: Preprints of the 9th International Symposium on Dynamic Games and Applications. Wroclaw, Poland (2008)

    Google Scholar 

  36. Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton–Jacobi equations. PhD Thesis. University of Wisconsin-Madison (1983)

    Google Scholar 

  37. Starr, A.W., Ho, Y.C.: Nonzero-sum differential games. J. Optim. Theory Appl. 3, 184–206 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  38. Stipanović, D.M., Hwang, I., Tomlin, C.J.: Computation of an over-approximation of the backward reachable set using subsystem level set functions. In: Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 11, 399–411 (2004)

    MATH  Google Scholar 

  39. Stipanović, D.M., Shankaran, S., Tomlin, C.: Strategies for agents in multi-player pursuit-evasion games. In: Preprints of the Eleventh International Symposium on Dynamic Games and Applications. Tucson, Arizona (2004)

    Google Scholar 

  40. Stipanović, D.M., Melikyan, A.A., Hovakimyan, N.V.: Some sufficient conditions for multi-player pursuit evasion games with continuous and discrete observations. Ann. Int. Soc. Dyn. Games 10, 133–145 (2009)

    Google Scholar 

  41. Subbottin, A.: A generalization of the basic equation of the theory of differential games. Soviet Math. Doklady 22, 358–362 (1980)

    Google Scholar 

  42. Tanner, A.J.H., Jadbabaie, A., Pappas, G.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 5, 863–868 (2007)

    Article  MathSciNet  Google Scholar 

  43. Tisdale, J., Kim, Z., Hedrick, J.: Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag. 16, 35–42 (2009)

    Article  Google Scholar 

  44. Vaisbord, E.M., Zhukovskiy, V.I.: Introduction to Multi-player Differential Games and Their Applications. Gordon and Breach, New York (1988)

    Google Scholar 

  45. Wood, A.D., Stankovic, J.A., Son, S.H.: Jam: a jammed-area mapping service for sensor networks. In: Proceedings of 24th IEEE Real-Time Systems Symposium (RTSS 03), pp. 286–297, December 2003

    Google Scholar 

  46. Wood, A.D., Stankovic, J.A., Zhou, G.: Deejam: defeating energy-efficient jamming in IEEE 802.15.4 basedwireless networks. In: Proceedings of 4th Annual IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON 07), pp. 60–69 (2007)

    Google Scholar 

  47. Wu, X., Wood, T., Trappe, W., Zhang, Y.: Channel surfing and spatial retreats: defenses against wireless denial of service. In: Proceedings of 3rd ACM Workshop on Wireless Security (WiSe 04), pp. 80–89 (2004)

    Google Scholar 

  48. Zhukovskiy, V.I., Salukvadze, M.E.: The Vector Valued Maxmin, vol. 193. Academic, San Diego (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourabh Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharya, S., Başar, T. (2013). Differential Game-Theoretic Approach to a Spatial Jamming Problem. In: Cardaliaguet, P., Cressman, R. (eds) Advances in Dynamic Games. Annals of the International Society of Dynamic Games, vol 12. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8355-9_13

Download citation

Publish with us

Policies and ethics