Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 300))

Abstract

We study spherical Whittaker functions on a metaplectic cover of GL(r + 1) over a nonarchimedean local field using lattice models from statistical mechanics. An explicit description of this Whittaker function was given in terms of Gelfand–Tsetlin patterns in (Brubaker et al., Ann. of Math. 173(2):1081–1120, 2011; McNamara, Duke Math. J. 156:29–31, 2011), and we translate this description into an expression of the values of the Whittaker function as partition functions of a six-vertex model. Properties of the Whittaker function may then be expressed in terms of the commutativity of row transfer matrices potentially amenable to proof using the Yang–Baxter equation. We give two examples of this: first, the equivalence of two different Gelfand–Tsetlin definitions, and second, the effect of the Weyl group action on the Langlands parameters. The second example is closely connected with another construction of the metaplectic Whittaker function by averaging over a Weyl group action (Chinta and Gunnells, J. Amer. Math. Soc. 23:189–215, 2010; Chinta and Offen, Amer. J. Math., 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. D. Banks, J. Levy, and M. R. Sepanski, Block-compatible metaplectic cocycles, J. Reine Angew. Math. 507 (1999), 131–163.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989, Reprint of the 1982 original.

    Google Scholar 

  3. A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77–128.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Brubaker, D. Bump, and S. Friedberg, Gauss sum combinatorics and metaplectic Eisenstein series, Automorphic forms and L-functions I. Global aspects, Contemp. Math., vol. 488, Amer. Math. Soc., Providence, RI, 2009, pp. 61–81.

    Google Scholar 

  5. B. Brubaker, D. Bump, and S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. of Math. (2) 173 (2011), no. 2, 1081–1120.

    Google Scholar 

  6. B. Brubaker, D. Bump, and S. Friedberg, Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory. Annals of Mathematics Studies, vol. 225, Princeton University Press, 2011.

    Google Scholar 

  7. B. Brubaker, D. Bump, and S. Friedberg, Schur polynomials and the Yang-Baxter equation, Comm. Math. Phys., 308(2):281–301, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein, Weyl group multiple Dirichlet series. III. Eisenstein series and twisted unstable A r, Ann. of Math. (2) 166 (2007), no. 1, 293–316.

    Google Scholar 

  9. G. Chinta and P. E. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), no. 1, 189–215.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Chinta and O. Offen, A metaplectic Casselmann–Shalika formula for GL r, Amer. J. Math., to appear.

    Google Scholar 

  11. A. M. Hamel and R. C. King, U-turn alternating sign matrices, symplectic shifted tableaux and their weighted enumeration, J. Algebraic Combin. 21 (2005), no. 4, 395–421.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. A. Kazhdan and S. J. Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math. (1984), no. 59, 35–142.

    Google Scholar 

  13. A. N. Kirillov and A. D. Berenstein, Groups generated by involutions, Gelfand-Tsetlin patterns, and combinatorics of Young tableaux, Algebra i Analiz 7 (1995), no. 1, 92–152.

    MathSciNet  MATH  Google Scholar 

  14. P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145–179.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. J. McNamara, Metaplectic Whittaker functions and crystal bases, Duke Math. J. 156 (2011), no. 1, 29–31.

    Article  MathSciNet  Google Scholar 

  16. P. McNamara, Principal series representations of metaplectic groups over local fields, in this volume.

    Google Scholar 

  17. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62.

    Google Scholar 

  18. T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GL n over P-adic fields, Proc. Japan Acad. 52 (1976), no. 4, 180–182.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bump .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Gunnells, P.E. (2012). Metaplectic Ice. In: Bump, D., Friedberg, S., Goldfeld, D. (eds) Multiple Dirichlet Series, L-functions and Automorphic Forms. Progress in Mathematics, vol 300. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8334-4_3

Download citation

Publish with us

Policies and ethics