Skip to main content

Parts Entropy and the Principal Kinematic Formula

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Automated (robotic) assembly systems that are able to function in the presence of uncertainties in the positions and orientations of feed parts are, by definition, more robust than those that are not able to do so. This can be quantified with the concept of “parts entropy,” which is a statistical measure of the ensemble of all possible positions and orientations of a single part confined to move in a finite domain. In this chapter the concept of parts entropy is extended to the case of multiple interacting parts. Various issues associated with computing the entropy of ensembles of configurations of parts with excluded-volume constraints are explored. The rapid computation of excluded-volume effects using the “principal kinematic formula” from the field of Integral Geometry is illustrated as a way to potentially avoid the massive computations associated with brute-force calculation of parts entropy when many interacting parts are present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., Taylor, J., Random Fields and Geometry, Springer, New York, 2007.

    Google Scholar 

  2. Ambartzumian, R.V., Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley and Sons, Somerset, NJ, 1982.

    Google Scholar 

  3. Ambartzumian, R.V., “Stochastic geometry from the standpoint of integral geometry,” Adv. Appl. Probab., 9(4), pp. 792–823, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  4. Baccelli, F., Klein, M., Lebourges, M., Zuyev, S., “Stochastic geometry and architecture of communication networks,” Telecommun. Syst., 7, pp. 209–227, 1997.

    Article  Google Scholar 

  5. Baddeley, A., “Stochastic geometry: An introduction and reading-list,” Int. Statist. Rev. / Rev. Int. Statist., 50(2), pp. 179–193, 1982.

    MathSciNet  MATH  Google Scholar 

  6. Baddeley, A.J., Jensen, E.B.V., Stereology for Statisticians, Monographs on Statistics and Applied Probability Vol. 103. Chapman & Hall/CRC, Boca Raton, FL, 2005.

    Google Scholar 

  7. Baryshnikov, Y., Ghrist, R., “Target enumeration in sensor networks via integration with respect to Euler characteristic,” SIAM J. Appl. Math. 70, pp. 825–844, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. Beneˇs, V., Rataj, J., Stochastic Geometry: Selected Topics, Kluwer Academic, Boston, 2004.

    Google Scholar 

  9. Bernig, A., “A Hadwiger-type theorem for the special unitary group,” Geom. Funct. Anal., 19, pp. 356–372, 2009 (also arXiv:0801.1606v4, 2008).

    Google Scholar 

  10. Bernig, A., Fu, J.H.G., “Hermitian integral geometry,” Ann. of Math., 173, pp. 907–945, 2011 (also arXiv:0801.0711v9, 2010).

    Google Scholar 

  11. Blaschke, W., “Einige Bemerkungen ¨uber Kurven und Fl¨achen konstanter Breite,” Ber. Kgl. S¨achs. Akad. Wiss. Leipzig, 67, pp. 290–297, 1915.

    Google Scholar 

  12. Blaschke, W., Vorlesungen ¨uber Integralgeometrie, Deutscher Verlag der Wissenschaften, Berlin, 1955.

    Google Scholar 

  13. Bonnesen, T., Fenchel, W., Theorie der Konvexen K¨orper, Springer Verlag, Heidelberg, 1934.

    Google Scholar 

  14. Boothroyd G., Assembly Automation and Product Design, 2nd ed., CRC Press, Boca Raton, FL, 2005.

    Google Scholar 

  15. Boothroyd, G., Redford, A.H., Mechanized Assembly: Fundamentals of Parts Feeding, Orientation, and Mechanized Assembly, McGraw-Hill, London, 1968.

    Google Scholar 

  16. Br¨ocker, L., “Euler integration and Euler multiplication,” Adv. Geom., 5(1), pp. 145–169, 2005.

    Google Scholar 

  17. Brothers, J.E., “Integral geometry in homogeneous spaces,” Trans. Am. Math. Soc., 124, pp. 408–517, 1966.

    Article  MathSciNet  Google Scholar 

  18. Buffon, G.L.L., “Comte de: Essai d’Arithm´etique Morale,” In: Histoire naturelle, g´en´erale et particuli`ere, Suppl´ement 4, pp. 46–123. Imprimerie Royale, Paris, 1777.

    Google Scholar 

  19. Chen, C.-S., “ On the kinematic formula of square of mean curvature,” Indiana Univ. Math. J., 22, pp. 1163–1169, 1972–3.

    Google Scholar 

  20. Chern, S.-S., “On the kinematic formula in the Euclidean space of N dimensions,” Am. J. Math., 74(1), pp. 227–236, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chern, S.-S., “On the kinematic formula in integral geometry,” J. Math. Mech., 16(1), pp. 101–118, 1966.

    MathSciNet  MATH  Google Scholar 

  22. Chirikjian, G.S., “Parts entropy, symmetry, and the difficulty of self-replication,” Proceedings of the ASME Dynamic Systems and Control Conference, Ann Arbor, Michigan, October 20–22, 2008.

    Google Scholar 

  23. Chirikjian, G.S., “Parts Entropy and the Principal Kinematic Formula,” Proceedings of the IEEE Conference on Automation Science and Engineering, pp. 864–869, Washington, DC, August 23–26, 2008.

    Google Scholar 

  24. Chirikjian, G.S., “Modeling loop entropy,” Methods Enzymol, C, 487, pp. 101–130, 2011.

    Google Scholar 

  25. Crofton, M.W., “Sur quelques th´eor`emes de calcul int´egral,” C.R. Acad. Sci. Paris, 68, pp. 1469–1470, 1868.

    Google Scholar 

  26. Crofton, M.W., “Probability.” In: Encyclopedia Britannica, 9th ed., 19, pp. 768–788. Cambridge University Press, Cambridge, 1885.

    Google Scholar 

  27. Czuber, E., Geometrische Wahrscheinlichkeiten und Mittelwerte, B. G. Teubner, Leipzig, 1884 (reprinted in 2010 by BiblioBazaar/Nabu Press, Charleston, South Carolina, 2010).

    Google Scholar 

  28. de Mello, L.S.H., Lee, S., eds., Computer-Aided Mechanical Assembly Planning, Kluwer, Boston, 1991.

    Google Scholar 

  29. Erdmann, M.A., Mason, M.T., “An exploration of sensorless manipulation”, IEEE J. Robot. Autom., 4(4), pp. 369–379, 1988.

    Article  Google Scholar 

  30. Federer, H., “Some integralgeometric theorems,” Trans. Am. Math. Soc., 72(2), pp. 238– 261, 1954.

    Article  MathSciNet  Google Scholar 

  31. Fournier, J.J.F., “Sharpness in Young’s inequality for convolution,” Pacific J. Math., 72(2), pp. 383–397, 1977.

    MathSciNet  MATH  Google Scholar 

  32. Fu, J.H.G., “Kinematic formulas in integral geometry,” Indiana Univ. Math. J., 39(4), pp. 1115–1154, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  33. Fu, J.H.G., “The two faces of Blaschkean integral geometry,” Internet notes, August 22, 2008, http://www.math.uga.edu/fu/research/research.html.

    Google Scholar 

  34. F¨uhr, H., “Hausdorff–Young inequalities for group extensions,” Can. Math. Bull., 49(4), pp. 549–559, 2006.

    Google Scholar 

  35. Glasauer, S., “A generalization of intersection formulae of integral geometry,” Geom. Dedicata, 68, pp. 101–121, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  36. Glasauer, S., “Translative and kinematic integral formulae concerning the convex hull operation,” Math. Z., 229, pp. 493–518, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  37. Goodey, P.,Weil, W., “Translative integral formulae for convex bodies,” Aequationes Mathematicae, 34, pp. 64–77, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  38. Goodey, P., Weil, W., “Intersection bodies and ellipsoids,” Mathematika, 42, pp. 295–304, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  39. Groemer, H., “On translative integral geometry,” Arch. Math., 29, pp. 324–330, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  40. Hadwiger, H., Vorlesungen ¨uber Inhalt, Oberfl¨ache und Isoperimetrie., Springer-Verlag, Berlin, 1957.

    Google Scholar 

  41. Hadwiger, H., Altes und Neues ¨uber Konvexe K¨orper, Birkh¨auser-Verlag, Basel, 1955.

    Google Scholar 

  42. Harding, E.F., Kendall, D.G., Stochastic Geometry: A Tribute to the Memory of Rollo Davidson, John Wiley and Sons, London, 1974.

    Google Scholar 

  43. Howard, R., “The kinematic formula in Riemannian homogeneous spaces,” Mem. Am. Math. Soc., 106(509), pp. 1–69, 1993.

    Google Scholar 

  44. Karnik, M., Gupta, S.K., Magrab, E.B., “Geometric algorithms for containment analysis of rotational parts,” Computer-Aided Design, 37(2), pp. 213–230, 2005.

    Article  Google Scholar 

  45. Kendall, M.G., Moran, P.A.P., Geometrical Probability, Griffin’s Statistical Monographs, London, 1963.

    Google Scholar 

  46. Klain, D.A., Rota, G.-C., Introduction to Geometric Probability, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  47. Langevin, R., Integral Geometry from Buffon to Geometers of Today, Internet notes, 2009, http://math.u-bourgogne.fr/IMB/langevin/09 03 introdintegral.pdf.

    Google Scholar 

  48. Langevin, R., Shifrin, T., “Polar varieties and integral geometry,” Am. J. Math., 104(3), pp. 553–605, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, Y., Popplestone, R.J., “Symmetry Groups in Analysis of Assembly Kinematics,” ICRA 1991, pp. 572–577, Sacramento, CA, April 1991.

    Google Scholar 

  50. Mani-Levitska, P., “A simple proof of the kinematic formula,” Monatsch. Math., 105, pp. 279–285, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  51. Miles, R. E. “The fundamental formula of Blaschke in integral geometry and geometrical probability, and its iteration, for domains with fixed orientations,” Austral. J. Statist., 16, pp. 111–118, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  52. Nijenhuis, A., “On Chern’s kinematic formula in integral geometry,” J. Diff. Geom., 9, pp. 475–482, 1974.

    MathSciNet  MATH  Google Scholar 

  53. Ohmoto, T., “An elementary remark on the integral with respect to Euler characteristics of projective hyperplane sections,” Rep. Fac. Sci. Kagoshima Univ., 36, pp. 37–41, 2003.

    MathSciNet  MATH  Google Scholar 

  54. Poincar´e, H., Calcul de Probabilit´es, 2nd ed., Gauthier-Villars, Imprimeur-Libraire, Paris, 1912. (reprinted by BiblioLife in 2009).

    Google Scholar 

  55. P´olya, G., “ ¨Uber geometrische Wahrscheinlichkeiten,” S.-B. Akad. Wiss. Wien, 126, pp. 319–328, 1917.

    Google Scholar 

  56. Rataj, J., “A translative integral formula for absolute curvature measures,” Geom. Dedicata, 84, pp. 245–252, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  57. Rataj, J., Z¨ahle, M., “Mixed curvature measures for sets of positive reach and a translative integral formula,” Geom. Dedicata, 57, pp. 259–283, 1995.

    Google Scholar 

  58. Ren, D.-L., Topics in Integral Geometry, World Scientific Publishing, Singapore, 1994.

    Google Scholar 

  59. Rother, W., Z¨ahle, M., “A short proof of the principal kinematic formula and extensions,” Trans. Am. Math. Soc., 321, pp. 547–558, 1990.

    Google Scholar 

  60. Sanderson, A.C., “Parts entropy methods for robotic assembly system design,” Proceedings of the 1984 IEEE International Conference on Robotics and Automation (ICRA ’84), Vol. 1, pp. 600–608, March 1984.

    Google Scholar 

  61. Santal´o, L., Integral Geometry and Geometric Probability, Cambridge University Press, Cambridge, 2004 (originally published in 1976 by Addison-Wesley).

    Google Scholar 

  62. Schneider, R., “Kinematic measures for sets of colliding convex bodies,” Mathematika 25, pp. 1–12, 1978.

    Article  MathSciNet  Google Scholar 

  63. Schneider, R., Weil, W., “Translative and kinematic integral formulas for curvature measures,” Math. Nachr. 129, pp. 67–80, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  64. Schneider, R., Weil, W., Stochastic and Integral Geometry, Springer-Verlag, Berlin, 2008.

    Google Scholar 

  65. Schneider, R., “Integral geometric tools for stochastic geometry,” in Stochastic Geometry, A. Baddeley, I. B´ar´any, R. Schneider, W. Weil, eds., pp. 119–184, Springer, Berlin, 2007.

    Google Scholar 

  66. Shifrin, T., “The kinematic formula in complex integral geometry,” Trans. Am. Math. Soc., 264, pp. 255–293, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  67. Schuster, F.E., “Convolutions and multiplier transformations of convex bodies,” Trans. Am. Math. Soc., 359(11), pp. 5567–5591, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  68. Slavski˘i, V.V., “On an integral geometry relation in surface theory,” Siberian Math. J., 13(3), pp. 645–658, 1972.

    Google Scholar 

  69. Solanes, G., “Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces,” Trans. Am. Math. Soc., 358(3), pp. 1105–1115, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  70. Solomon, H.,Geometric Probability, SIAM, Philadelphia, 1978.

    Google Scholar 

  71. Stoyan, D., Kendall, W.S., Mecke, J., Stochastic Geometry and its Applications, 2nd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, Chichester, UK, 1995.

    Google Scholar 

  72. Stoyan, D., “Applied stochastic geometry: A survey,” Biomed. J., 21, pp. 693–715, 1979.

    MathSciNet  MATH  Google Scholar 

  73. Taylor, J.E., “A Gaussian kinematic formula,” Ann. Probab., 34(1), pp. 122–158, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  74. Teufel, V.E., “Integral geometry and projection formulas in spaces of constant curvature,” Abh. Math. Sem. Univ. Hamburg, 56, pp. 221–232, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  75. Viro, O., “Some integral calculus based on Euler characteristic,” Lecture Notes in Mathematics, Vol. 1346, pp. 127–138, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  76. Wang, Y., Chirikjian, G.S., “Error propagation on the Euclidean group with applications to manipulator kinematics,” IEEE Trans. Robot., 22(4), pp. 591–602, 2006.

    Article  Google Scholar 

  77. Weil, W., “Translative integral geometry,” in Geobild ’89, A. H¨ubler et al., eds., pp. 75–86, Akademie-Verlag, Berlin, 1989.

    Google Scholar 

  78. Weil, W., “Translative and kinematic integral formulae for support functions,” Geom. Dedicata, 57, pp. 91–103, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  79. Whitney, D.E., Mechanical Assemblies, Oxford University Press, New York, 2004.

    Google Scholar 

  80. Wolf, J.A., Spaces of Constant Curvature, Publish or Perish Press, Berkeley, CA, 1977.

    Google Scholar 

  81. Young,W.H. “On the multiplication of successions of Fourier constants,” Proc. Soc. London A, 87, pp. 331–339, 1912.

    Article  MATH  Google Scholar 

  82. Zhang, G., “A sufficient condition for one convex body containing another,” Chin. Ann. Math., 9B(4), pp. 447–451, 1988.

    Google Scholar 

  83. Zhou, J., “A kinematic formula and analogues of Hadwiger’s theorem in space,” Contemporary Mathematics, Vol. 140, pp. 159–167, American Mathematical Society, 1992.

    Google Scholar 

  84. Zhou, J., “When can one domain enclose another in R3?,” J. Austral. Math. Soc. A, 59, pp. 266–272, 1995.

    Article  MATH  Google Scholar 

  85. Zhou, J., “Sufficient conditions for one domain to contain another in a space of constant curvature,” Proc. AMS, 126(9), pp. 2797–2803, 1998.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Chirikjian .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chirikjian, G.S. (2012). Parts Entropy and the Principal Kinematic Formula. In: Stochastic Models, Information Theory, and Lie Groups, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4944-9_6

Download citation

Publish with us

Policies and ethics