Skip to main content

From Kinetic Theory for Active Particles to Modelling Immune Competition

  • Chapter
  • First Online:
  • 1145 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellomo, N., De Angelis, E., Preziosi, L.: Multiscale modelling and mathematical problems related to tumor evolution and medical therapy. J. Theor. Medicine,5, 111–136 (2003).

    Article  MATH  Google Scholar 

  2. Bellomo, N., Bellouquid, A., Delitala, M.: Mathematical topics in the modelling complex multicellular systems and tumor immune cells competition. Math. Mod. Meth. Appl. Sci.,14, 1683–1733 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellouquid, A., Delitala, M.: Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach. Birkhäuser, Boston (2006).

    MATH  Google Scholar 

  4. Arlotti, L., Bellomo, N., De Angelis, E.: Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math. Mod. Meth. Appl. Sci.,12, 579–604 (2002).

    Article  MathSciNet  Google Scholar 

  5. Bellomo, N.: Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach. Birkhäuser, Boston (2008).

    MATH  Google Scholar 

  6. Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comp. Mod.,20, 107–122 (1994).

    Article  MATH  Google Scholar 

  7. Arlotti, L., Lachowicz, M., Gamba, A.: A kinetic model of tumor/immune system cellular interactions. J. Theor. Medicine,4, 39–50 (2002).

    Article  MATH  Google Scholar 

  8. De Angelis, E., Jabin, P.E.: Qualitative analysis of a mean field model of tumorimmune system competition. Math. Meth. Appl. Sci.,28, 2061–2083 (2005).

    Article  MATH  Google Scholar 

  9. Kolev, M.: Mathematical modeling of the competition between acquired immunity and cancer. Appl. Math. Comp. Science,13, 289–297 (2003).

    MATH  MathSciNet  Google Scholar 

  10. Bellouquid, A., Delitala, M.: Kinetic (cellular) models of cell progression and competition with the immune system. Z. Angew. Math. Phys.,55, 295–317 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  11. Derbel, L.: Analysis of a new model for tumor-immune system competition including long time scale effects. Math. Mod. Meth. Appl. Sci.,14, 1657–1682 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolev, M.: A mathematical model of cellular immune response to leukemia. Math. Comp. Mod.,41, 1071–1082 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  13. Kolev, M., Kozlowska, E., Lachowicz, M.: Mathematical model of tumor invasion along linear or tubular structures. Math. Comp. Mod.,41, 1083–1096 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. Bellouquid, A., Delitala, M.: Mathematical methods and tools of kinetic theory towards modelling of complex biological systems. Math. Mod. Meth. Appl. Sci.,15, 1619–1638 (2005).

    Article  MathSciNet  Google Scholar 

  15. Brazzoli, I., Chauviere, A.: On the discrete kinetic theory for active particles. Modelling the immune competition. Comput. and Math. Meth. in Medicine,7, 143–157 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  16. Adam, J., Bellomo, N. (Eds.): A Survey of Models on Tumor Immune Systems Dynamics. Birkhäuser, Boston (1997).

    Google Scholar 

  17. Preziosi, L.: Modeling Cancer Growth. CRC Press-Chapman Hall, Boca Raton, FL (2003).

    Google Scholar 

  18. Bellomo, N., Maini, P.K.: Preface of the Special issue on cancer modeling (II). Math. Mod. Meth. Appl. Sci.,16, iii–vii (2006).

    Article  MathSciNet  Google Scholar 

  19. Bellomo, N., Sleeman, B.D.: Preface of the Special issue on multiscale cancer modelling. Comput. and Math. Meth. in Medicine,7, 67–70 (2006).

    Article  MathSciNet  Google Scholar 

  20. Bellomo, N., De Lillo, S., Salvatori, C.: Mathematical tools of the kinetic theory of active particles with some reasoning on the modelling progression and heterogeneity. Math. Comp. Mod.,45, 564–578 (2007).

    Article  MATH  Google Scholar 

  21. De Angelis, E., Delitala, M.: Modelling complex systems in applied sciences methods and tools of the mathematical kinetic theory for active particles. Math. Comp. Mod.,43, 1310–1328 (2006).

    Article  MATH  Google Scholar 

  22. Bellomo, N., Forni, G.: Looking for new paradigms towards a biologicalmathematical theory of complex multicellular systems. Math. Mod. Meth. Appl. Sci.,16, 1001–1029 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  23. Bellomo, N., Forni, G.: Complex multicellular systems and immune competition: new paradigms looking for a mathematical theory. Current Topics in Developmental Biology,81, 485–502 (2007).

    Article  Google Scholar 

  24. Hartwell, H.L., Hopfield, J.J., Leibner, S., Murray, A.W.: From molecular to modular cell biology. Nature,402, c47–c52 (1999).

    Article  Google Scholar 

  25. Reed, R.: Why is mathematical biology so hard? Notices of the American Mathematical Society,51, 338–342 (2004).

    MATH  MathSciNet  Google Scholar 

  26. Woese, C.R.: A new biology for a new century. Microbiology and Molecular Biology Reviews,68, 173–186 (2004).

    Article  Google Scholar 

  27. Lollini, P.L., Motta, S., Pappalardo, F.: Modelling the immune competition. Math. Mod. Meth. Appl. Sci.,16, 1091–1124 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  28. Hillen, T., Othmer, H.: The diffusion limit of transport equations derived from velocity jump processes. SIAM J. Appl. Math.,61, 751–775 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  29. Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math.,61, 183–212 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  30. Bellomo, N., Bellouquid, A.: From a class of kinetic models to macroscopic equations for multicellular systems in biology. Discrete Contin. Dyn. Syst. B,4, 59–80 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  31. Lachowicz, M.: Micro and meso scales of description corresponding to a model of tissue invasion by solid tumours. Math. Mod. Meth. Appl. Sci.,15, 1667–1684 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. Bellomo, N., Bellouquid, A.: On the mathematical kinetic theory of active particles with discrete states—The derivation of macroscopic equations. Math. Comp. Mod.,44, 397–404 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  33. Chalub, F., Dolak-Struss, Y., Markowich, P., Oeltz, D., Schmeiser, C., Soref, A.: Model hierarchies for cell aggregation by chemotaxis. Math. Mod. Meth. Appl. Sci.,16, 1173–1198 (2006).

    Article  MATH  Google Scholar 

  34. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multicellular biological growing systems: hyperbolic limits towards macroscopic description. Math. Mod. Meth. Appl. Sci.,17, 1675–1692 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  35. Delitala, M., Forni, G.: From the mathematical kinetic theory of active particles to modelling genetic mutations and immune competition. Internal Report, Dept. Mathematics, Politecnico, Torino (2008).

    Google Scholar 

  36. Nowak, M.A., Sigmund, K.: Evolutionary dynamics of biological games. Science,303, 793–799 (2004).

    Article  Google Scholar 

  37. Komarova, N.: Stochastic modelling of loss- and gain-of-function mutations in cancer. Math. Mod. Meth. Appl. Sci.,17, 1647–1673 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  38. Weinberg, R.A.: The Biology of Cancer. Garland Sciences-Taylor and Francis, New York (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Bellouquid .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Bellouquid, A., Delitala, M. (2008). From Kinetic Theory for Active Particles to Modelling Immune Competition. In: Selected Topics in Cancer Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4713-1_2

Download citation

Publish with us

Policies and ethics