Skip to main content

Multiscale Modelling of Solid Tumour Growth

  • Chapter
  • First Online:
Book cover Selected Topics in Cancer Modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.A.: Mathematical models of perivascular spheriod development and catastrophe-theoretic description of rapid metastatic growth/tumor remission, Invasion Metastasis,16, 247–267 (1996).

    Google Scholar 

  2. Alarcón, T., Byrne, H.M., and Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment, J. Theor. Biol.,225, 257–274 (2003).

    Article  Google Scholar 

  3. Alarcón, T., Byrne, H.M., and Maini, P.K.: Towards whole-organ modelling of tumour growth, Prog. Biophys. Mol. Biol.,85, 451–472 (2004).

    Article  Google Scholar 

  4. Alarcón, T., Byrne, H.M., and Maini, P.K.: A multiple scale model for tumour growth, Multiscale Mod. Sim.,3, 440–475 (2005).

    MATH  Google Scholar 

  5. Alarcón, T., Byrne, H.M., and Maini, P.K.: A design principle for vascular beds: the effects of complex blood rheology, Microvasc. Res.,69, 156–172 (2005).

    Google Scholar 

  6. Alarcón, T., Owen, M.R., Byrne, H.M., and Maini, P.K.: Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy, Comp. Math. Methods Med.,7, 85–119 (2006).

    Article  MATH  Google Scholar 

  7. Anderson, A.R.A., and Chaplain, M.A.J.: Continuous and discrete mathematical models of tumour-induced angiogenesis, Bull. Math. Biol.,60, 857–899 (1998).

    Article  MATH  Google Scholar 

  8. Anderson, A.R.A., Weaver, A.M., Cummings, T.M., and Quaranta, V.: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment, Cell,127, 905–915 (2006).

    Article  Google Scholar 

  9. Araujo, R.P., and McElwain, D.L.S.: A history of the study of solid tumor growth: the contribution of mathematical modelling, Bull. Math. Biol.,66, 1039–1091 (2004).

    Article  MathSciNet  Google Scholar 

  10. Armitage, P., and Doll, R.: The age distribution of cancer and a multistage theory of carcinogenesis, Br. J. Cancer,8, 1–12 (1954).

    Google Scholar 

  11. Brodland, G.W.: Computational modeling of cell sorting, tissue engulfment, and related phenomena: a review, Appl. Mech. Rev.,57, 47–76 (2004).

    Article  Google Scholar 

  12. Byrne, H.M., Alarcón, T., Owen, M.R., Murphy, J., and Maini, P.K.: Modelling the response of vascular tumours to chemotherapy: a multiscale approach, Math. Mod. Meth. Appl. Sci.,16, 1219–1241 Suppl S (2006).

    Article  MATH  Google Scholar 

  13. Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., and Tawhai, M.: Computational physiology and the Physiome project, Exp. Physiol.,89, 21–26 (2004).

    Article  Google Scholar 

  14. Drasdo, D., and Loeffler, M.: Individual-based models to growth and folding in one-layered tissues: intestinal crypts and early development, Nonlinear Analysis,47, 245–256 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. Edwards, C.M., and Chapman, J.S.: Biomechanical modelling of colorectal crypt budding and fission, Bull. Math. Biol.,69, 1927–1942, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferlay, F., Autier, P., Boniol, M., Heanue, M., Colombet, M., and Boyle, P.: Estimates of the cancer incidence and mortality in Europe in 2006, Ann. Oncol.,18, 581–592 (2007).

    Article  Google Scholar 

  17. Fung, Y.C.: Biomechanics, Springer, New York (1993).

    Google Scholar 

  18. Gatenby, R.A., and Gawlinski, E.T.: A reaction-diffusion model of cancer invasion, Cancer Res.,56, 5745–5753 (1996).

    Google Scholar 

  19. Gatenby, R.A., and Gillies, R.J.: Why do cancers have high aerobic glycolysis? Nature Rev. Cancer,4, 891–899 (2004).

    Article  Google Scholar 

  20. Gatenby, R.A., and Maini, P.K.: Mathematical oncology: cancer summed up, Nature,421, 321 (2003).

    Article  Google Scholar 

  21. Gatenby, R.A., Smallbone, K., Maini, P.K., Rose, F., Averill, J., Nagel, R.B., Worrall, L., and Gillies, R.J.: Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer, Brit. J. Cancer,97, 646–653 (2007).

    Article  Google Scholar 

  22. Gavaghan, D.J., Simpson, A.C., Lloyd, S., MacRandal, D.F., and Boyd, D.R.: Towards a Grid infrastructure to support integrative approaches to biological research, Philos. Transact. A Math. Phys. Eng. Sci.,363, 1829–1841 (2005).

    Article  Google Scholar 

  23. Gerlee, P., and Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of solid tumour growth, J. Theor. Biol.,246, 583–603 (2007).

    Article  MathSciNet  Google Scholar 

  24. Gillies, R.J., Liu, Z., and Bhujwalla, Z.: 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate, Am. J. Physiol.,267, 195–203 (1994).

    Google Scholar 

  25. Grinstein, S., Rotin, D., and Mason, M.J.: Na+/H+ exchange and growth factor-induced cytosolic pH changes: role in cellular proliferation, Biochim. Biophys. Acta,988, 73–97 (1989).

    Google Scholar 

  26. Haberkorn, U., Strauss, L.G., Reisser, C., Hagg, D., Dimitrakopoulu, A., Ziegler, S., Oberdorfe, F., Rudat, V., and van Kaick, G.: Glucose uptake, perfusion, and cell proliferation in head and neck tumours: relation to positron emission tomography and other whole-body applications, Semin. Nuc. Med.,22, 268–284 (1991).

    Google Scholar 

  27. Hanahan, D., and Weinberg, R.A.: The hallmarks of cancer, Cell,100, 57–70 (2000).

    Article  Google Scholar 

  28. Ilyas, M.: Wnt signalling and the mechanistic basis of tumour development, J. Pathol.,205, 130–144 (2005).

    Article  Google Scholar 

  29. Jain, R.K.: Determinants of tumour blood flow: a review, Cancer Res.,48, 2641–2658 (1988).

    Google Scholar 

  30. Jiang, Y., Pjseivac-Grbovic, J., Cantrell, C., and Freyer, J.P.: A multiscale model for avascular tumour growth, Biophys. J.,89, 3884–3894 (2005).

    Article  Google Scholar 

  31. Johnston, M.D., Edwards, C.M., Bodmer, W.F., Maini, P.K., and Chapman, S.J.: Mathematical modelling of cell population dynamics in the colonic crypt, Proc. Natl. Acad. Sci.,104, 4008–4013 (2007).

    Article  Google Scholar 

  32. Komarova, N.L., and Wang, L.: Initiation of colorectal cancer: where do the two hits hit?, Cell Cycle,3, 1558–1565 (2004).

    Google Scholar 

  33. Lee, E., Salic, A., Kruger, R., Heinrich, R., and Kirschner, M.W.: The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway, PLoS Biol.,1, E10 (2003).

    Article  Google Scholar 

  34. van Leeuwen, I.M.M., Byrne, H.M., Jensen, O.E., and King, J.R.: Crypt dynamics and colorectal cancer: advances in mathematical modelling, Cell Prolif.,39, 157–181 (2006).

    Article  Google Scholar 

  35. van Leeuwen, I.M.M., Byrne, H.M., Jensen, O.E., and King, J.R.: Elucidating the interactions between the adhesive and transcriptional functions of beta-catenin in normal and cancerous cells, J. Theor. Biol.,247, 77–102 (2007).

    Article  Google Scholar 

  36. van Leeuwen, I.M.M., Edwards, C.M., Ilyas, M., and Byrne, H.M.: Towards a multiscale model of colorectal cancer, W. J. Gastroenterol.,13, 1399–1407 (2007).

    Google Scholar 

  37. Loeffler, M., Stein, R., Wichmann, H.E., Potten, C.S., Kaur, P., and Chwalinski, S.: Intestinal crypt proliferation. I. A comprehensive model of steady-state proliferation in the crypt, Cell Tissue Kinetics,19, 627– 645 (1986).

    Google Scholar 

  38. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., and Sherratt, J.A.: Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol.,64, 673–702 (2002).

    Article  Google Scholar 

  39. McDougall, S.R., Anderson, A.R.A., and Chaplain, M.A.J.: Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. Bull. Math. Biol.,241, 564–589 (2006).

    MathSciNet  Google Scholar 

  40. Macklin, P., and Lowengrub, J.: Nonlinear simulation of the effect of microenvironment on tumor growth, J. Theor. Biol.,245, 677–704 (2007).

    Article  MathSciNet  Google Scholar 

  41. Meineke, F.A., Potten, C.S., and Loeffler, M.: Cell migration and organization in the intestinal crypt using a lattice-free model, Cell Prolif.,34, 253–266 (2001).

    Article  Google Scholar 

  42. Näthke, I.S.: The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium, Annu. Rev. Dev. Biol.,20, 337–366 (2004).

    Article  Google Scholar 

  43. Noble, D.: Systems biology and the heart, Biosystems,83, 75–80 (2005).

    Article  Google Scholar 

  44. dónofrio, A., and Tomlinson, I.P.: A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt, J. Theor. Biol.,244, 367–374 (2007).

    Article  Google Scholar 

  45. [OAMB08]Owen, M.R., Alarcón, T., Maini, P.K., and Byrne, H.M.: Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., in press.

    Google Scholar 

  46. Panetta, J.C.: A mathematical model of breast and ovarian cancer treated with paclitaxel, Math. Biosci.,146, 89–113 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  47. Patel, A.A., Gawlinsky, E.T., Lemieux, S.K., and Gatenby, R.A.: Cellular automaton model of early tumour growth and invasion: the effects of native tissue vascularity and increased anaerobic tumour metabolism, J. Theor. Biol.,213, 315–331 (2001).

    Article  Google Scholar 

  48. Paulus, U., Loeffler, M., Zeidler, J., Owen, G., and Potten, C.S.: The differentiation and lineage development of goblet cells in the murine small intestinal crypt: experimental and modelling studies, J. Cell Sci.,106, 473–484 (1993).

    Google Scholar 

  49. Potten, C.S., Merritt, A., Hickman, J., Hall, P., and Faranda, A.: Characterization of radiation-induced apoptosis in the small intestine and its biological implications, Int. J. Radiat. Biol.,65, 71–78 (1994).

    Article  Google Scholar 

  50. Pries, A.R., Secomb, T.W., and Gaehtgens, P.: Structural adaptation and stability of microvascular networks: theory and simulations, Am. J. Physiol.,275, H349–H360 (1998).

    Google Scholar 

  51. Ribba, B., Marron, K., Agur, Z., Alarcón, T., and Maini, P.K.: A mathematical model of doxorubicin treatment efficacy for non-Hodgkin’s lymphoma: investigation of the current protocol through theoretical modelling results, Bull. Math. Biol.,67, 79–99 (2005).

    Article  MathSciNet  Google Scholar 

  52. Ribba, B., Colin, T., and Schnell, S.: A multiscale mathematical model of cancer and its use in analyzing irradiation therapies, Theor. Biol. Med. Model.,3, 7 (2006).

    Article  Google Scholar 

  53. Roose, T., Chapman, S.J., and Maini, P.K.: Mathematical models of avascular tumour growth, SIAM Review,49, 179–208 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  54. Sansom, O.J., Reed, K.R., Hayes, A.J., Ireland, H., Brinkmann, H., Newton, I.P., Batlle, E., Simon-Assman, P., Clevers, H., Nathke, I.S., Clarke, A.R., and Winton, D.J.: Loss of Apcin vivo immediately perturbs Wnt signaling, differentiation, and migration, Genes Dev,18, 1385–1390 (2004).

    Article  Google Scholar 

  55. Shaked, Y., Ciarrocchi, A., Franco, M., Lee, C.R., Man, S., Cheung, A.M., Kicklin, D.J., Chaplin, D., Foster, F.S., Benezra, R., and Kerbel, R.S.: Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumours. Science,313, 1785–1787 (2006).

    Article  Google Scholar 

  56. Smallbone, K., Gatenby, R.A., Gillies, R.J., Maini, P.K., and Gavaghan, D.J.: Metabolic changes during carcinogenesis: potential impact on invasiveness. J. Theor. Biol.,244, 703–713 (2007).

    Article  MathSciNet  Google Scholar 

  57. Swat, M., Kel, A., and Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition, Bioinformatics,20, 1506– 1511 (2004).

    Article  Google Scholar 

  58. Tyson, J.J., and Novak, B.: Regulation of the eukariotic cell-cycle: molecular anatagonism, hysteresis, and irreversible transitions, J. Theor. Biol.,210, 249–263 (2001).

    Article  Google Scholar 

  59. Warburg, O.: The Metabolism of Tumours, Constable Press, L1ondon (1930).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Byrne .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Byrne, H.M., Leeuwen, I.v., Owen, M.R., Alarcón, T., Maini, P.K. (2008). Multiscale Modelling of Solid Tumour Growth. In: Selected Topics in Cancer Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4713-1_17

Download citation

Publish with us

Policies and ethics