Skip to main content

Dynamically Adaptive Tumour Induced Angiogenesis The Impact of Flow on the Developing Capillary Plexus

  • Chapter
  • First Online:
Book cover Selected Topics in Cancer Modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J.A. (1986) A simplified mathematical model of tumour growth.Math. Biosc. 81, 229–244.

    Article  MATH  Google Scholar 

  2. Alarcon, T., H. Byrne, and P. Maini (2003) A cellular automaton model for tumour growth in inhomogeneous environment.J. Theor. Biol. 225(15.2), 257– 274.

    Article  MathSciNet  Google Scholar 

  3. Anderson, A.R.A., B.D.S. Sleeman, I.M. Young, and B.S. Griffiths (1997) Nematode movement along a chemical gradient in a structurally heterogeneous environment: II Theory.Fundam. Appl. Nematol. 20, 165–172.

    Google Scholar 

  4. Anderson, A.R.A., and M.A.J. Chaplain (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis.Bull. Math. Biol. 60, 857–899.

    Article  MATH  Google Scholar 

  5. Ausprunk, D.H., and J. Folkman (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis.Microvasc. Res.14, 53–65.

    Article  Google Scholar 

  6. Baish, J.W., Y. Gazit, D.A. Berk, M. Nozue, L.T. Baxter, and R.K. Jain (1996) Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model.Microvasc. Res. 51, 327–346.

    Article  Google Scholar 

  7. Baish, J.W., P.A. Netti, and R.K. Jain (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumours.Microvasc. Res. 53, 128–141.

    Article  Google Scholar 

  8. Bray, D. (1992)Cell Movements, Garland Publishing, New York.

    Google Scholar 

  9. Benjamin, L.E., I. Hemo, and E. Keshet (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF.Development 125, 1591–1598.

    Google Scholar 

  10. Breward, C.J.W., H.M. Byrne, and C.E. Lewis (2003) A multiphase model describing vascular tumour growth.Bull. Math. Biol. 65, 609–640.

    Article  Google Scholar 

  11. Chaplain, M.A.J., and G. Lolas (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system.Math. Modell. Methods. Appl. Sci. 15, 1685–1734.

    Article  MATH  MathSciNet  Google Scholar 

  12. Chatzis, I., and F.A.L. Dullien (1977) Modelling pore structure by 2D and 3D networks with application to sandstone.J. Can. Pet. Technol. 16, 97.

    Google Scholar 

  13. Ciofalo, M., M.W. Collins, and T.R. Hennessy (1999) Microhydrodynamics phenomena in the circulation, in Nanoscale Fluid Dynamics in Physiological Processes, A Review Study. WIT Press, Southampton, UK, 219–236.

    Google Scholar 

  14. Davis, G.E., K.A. Pintar Allen, R. Salazar, and S.A. Maxwell (2000) Matrix metalloproteinase-1 and –9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices.J. Cell Sci. 114, 917–930.

    Google Scholar 

  15. El-Kareh, A.W., and T.W. Secomb (1997) Theoretical models for drug delivery to solid tumours.Crit. Rev. Biomed. Eng.25(6), 503–571.

    Google Scholar 

  16. Folkman, J., and M. Klagsbrun (1987) Angiogenic factors.Science 235, 442– 447.

    Article  Google Scholar 

  17. Franks, S.J., H.M. Byrne, J.R. King, J.C.E. Underwood, and C.E. Lewis (2005) Biological inferences from a mathematical model of comedo ductal carcinoma in situ of the breast.J. Theor. Biol. 232(15.4), 523–543.

    Article  Google Scholar 

  18. Fung, Y.C. (1993)Biomechanics. Springer-Verlag, New York.

    Google Scholar 

  19. Gatenby, R.A., and E.T. Gawlinski (2003) The glycolytic phenotype in carcinogenesis and tumour invasion. Insights through mathematical modelling.Cancer Res.63, 3847–3854.

    Google Scholar 

  20. Gimbrone, M.A., R.S. Cotran, S.B. Leapman, and J. Folkman (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea.J. Natl. Cancer Inst.52, 413–427.

    Google Scholar 

  21. Glass, L. (1973) Instability and mitotic patterns in tissue growth.J. Dyn. Syst. Meas. Control. 95, 324–327.

    Google Scholar 

  22. Gödde, R., and H. Kurz (2001) Structural and biophysical simulation of angiogenesis and vascular remodeling,Developmental Dynamics 220, 387–401.

    Article  Google Scholar 

  23. Gottlieb, M.E. (1990) Modelling blood vessels: a deterministic method with fractal structure based on physiological rules.Proc 12 th Int Conf of IEEE EMBS, 1386–1387, IEEE Press, New York.

    Google Scholar 

  24. Greenspan, H.P. (1972) Models for the growth of a solid tumour by diffusion.Stud. Appl. Math. 52, 317–340.

    Google Scholar 

  25. Greenspan, H.P. (1976). On the growth and stability of cell cultures and solid tumours.J. Theor. Biol. 56, 229–242.

    Article  MathSciNet  Google Scholar 

  26. Gruionu, G., J.B. Hoyling, A.R. Pries, and T.W. Secomb (2005) Structural remodelling of mouse gracilis artery after chronic alteration in blood supply.Am. J. Physiol. Heart. Circ. Physiol. 288, 2047–2054.

    Article  Google Scholar 

  27. Hidalgo, M., and S.G. Eckkhardt (2001) Development of matrix metalloproteinase inhibitors in cancer therapy.J. Natl. Cancer Inst. 93, 178–193.

    Article  Google Scholar 

  28. Honda, H., and K. Yoshizato (1997) Formation of the branching pattern of blood vessels in the wall of the avian yolk sac studied by a computer simulation.Develop. Growth Differ.39, 581–589.

    Article  Google Scholar 

  29. Jackson, T.L. (2002) Vascular tumour growth and treatment: consequences of polyclonality, competition and dynamic vascular support.J. Math. Biol. 44, 201–226.

    Article  MATH  MathSciNet  Google Scholar 

  30. Kamiya, A., R. Bukhari, and T. Togawa (1984) Adaptive regulation of wall shear stress optimizing vascular tree function.Bull. Math. Biol. 46, 127–137.

    Google Scholar 

  31. Krenz, G.S., and C.A. Dawson (2002) Vessel distensibility and flow distribution in vascular trees.J. Math. Biol. 44, 360–374.

    Article  MATH  MathSciNet  Google Scholar 

  32. Lankelma, J., R.F. Luque, H. Dekker, W. Shinkel, and H.M. Pinedao (2000) A mathematical model of drug transport in human breast cancer.Microvasc. Res. 59, 149–161.

    Article  Google Scholar 

  33. Serve, A.W., and K. Hellmann (1972) Metastases and normalization of tumor blood-vessels by icrf 159—new type of drug action.Br. Med. J. 1, 597– 601.

    Article  Google Scholar 

  34. Levine, H.A., S. Pamuk, B.D. Sleeman, and M. Nielsen-Hamilton (2001) Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma,Bull. Math. Biol. 63(15.5), 801–863.

    Article  Google Scholar 

  35. 35. Lolas, G. (2003) Mathematical modelling of the urokinase plasminogen activator system and its role in cancer invasion of tissue. PhD Thesis, University of Dundee.

    Google Scholar 

  36. McDougall, S.R., and K. Sorbie (1997) The application of network modelling techniques to multiphase flow in porous media.Petroleum Geosci.3, 161–169.

    Google Scholar 

  37. McDougall, S.R., A.R.A. Anderson, M.A.J. Chaplain, and J.A. Sherratt (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.Bull. Math. Biol.64(15.4), 673–702.

    Article  Google Scholar 

  38. McDougall, S.R., A.R.A. Anderson, and M.A.J. Chaplain (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies.J. Theor. Biol. 241, 564–589.

    Article  MathSciNet  Google Scholar 

  39. McElwain, D.L.S., and G.J. Pettet (1993) Cell migration in multicell spheroids: swimming against the tide.Bull. Math. Biol. 55, 655–674.

    MATH  Google Scholar 

  40. Madri, J.A., and B.M. Pratt (1986) Endothelial cell-matrix interactions: in vitro models of angiogenesis.J. Histochem. Cytochem. 34, 85–91.

    Google Scholar 

  41. Mohanty, K.K., and S.J. Salter (1982) Multiphase flow in porous media: II Pore-level modelling. SPE 11018 presented at the 57th Annual Conference of the SPE, New Orleans, Louisiana.

    Google Scholar 

  42. Mollica, F., R.K. Jain, and P.A. Netti (2003) A model for temporal heterogeneities of tumour blood flow.Microvasc. Res.65, 56–60.

    Article  Google Scholar 

  43. Morikawa, S., P. Baluk, T. Kaidoh, et al. (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors.Am. J. Pathol. 160, 985–1000.

    Google Scholar 

  44. Muthukkaruppan, V.R., L. Kubai, and R. Auerbach (1982) Tumor-induced neovascularization in the mouse eye.J. Natl. Cancer Inst.69, 699–705.

    Google Scholar 

  45. Nekka, F., S. Kyriacos, C. Kerrigan, and L. Cartilier (1996) A model for growing vascular structures.Bull. Math. Biol. 58(15.3), 409–424.

    Article  MATH  Google Scholar 

  46. Netti, P.A., S. Roberge, Y. Boucher, L.T. Baxter, and R.K. Jain (1996) Effect of transvascular fluid exchange on pressure-flow relationship in tumours: a proposed mechanism for tumour blood flow heterogeneity.Microvasc. Res.52, 27–46.

    Article  Google Scholar 

  47. Othmer, H., and A. Stevens (1997) Aggregation, blowup and collapse. The ABCs of taxis and reinforced random walks.SIAM. J. Appl. Math. 57, 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  48. Paweletz, N., and M. Knierim (1989) Tumor-related angiogenesis.Crit. Rev. Oncol. Hematol. 9, 197–242.

    Article  Google Scholar 

  49. Piri, M., and M.J. Blunt (2005a) Three-dimensional mixed-wet random porescale network modeling of two- and three-phase flow in porous media. I. Model description.Phys. Rev. E. 71, 026301.

    Article  Google Scholar 

  50. Piri, M., and M.J. Blunt (2005b) Three-dimensional mixed-wet random porescale network modeling of two- and three-phase flow in porous media. II. Results.Phys. Rev. E. 71, 026302.

    Article  Google Scholar 

  51. Plank, M.J., and B.D.S. Sleeman (2004) Lattice and non-lattice models of tumour angiogenesis.Bull. Math. Biol. 66(6), 1785–1819.

    Article  MathSciNet  Google Scholar 

  52. Please, C.P., G.J. Pettet, and D.L.S. McElwain (1998) A new approach to modelling the formation of necrotic regions in tumours.Appl. Math. Lett. 11, 89–94.

    Article  MATH  MathSciNet  Google Scholar 

  53. Popel, A.S., and P.C. Johnson (2005) Microcirculation and haemorheology.Ann. Rev. Fluid Mech. 37, 43–69.

    Article  MathSciNet  Google Scholar 

  54. Preziosi, L., and A. Farina (2002) On Darcy’s law for growing porous media.Int. J. Non-linear Mechanics.37, 485–491.

    Article  MATH  Google Scholar 

  55. Pries, A.R., T.W. Secomb, P. Gaehtgens, and J.F. Gross (1990) Blood flow in microvascular networks. Experiments and simulation.Circulation Res., 67, 826–834.

    Google Scholar 

  56. Pries, A.R., T.W. Secomb, and P. Gaehtgens (1996) Biophysical aspects of blood flow in the microvasculature.Cardiovasc. Res., 32, 654–667.

    Google Scholar 

  57. Pries, A.R., T.W. Secomb, and P. Gaehtgens (1998) Structural adaptation and stability of microvascular networks: theory and simulation.Am. J. Physiol. 275 (Heart Circ. Physiol. 44), H349–H360.

    Google Scholar 

  58. Pries, A.R., B. Reglin, and T.W. Secomb (2001a) Structural adaptation of microvascular networks: functional roles of adaptive responses.Am. J. Physiol. Heart Circ. Physiol. 281, H1015–H1025.

    Google Scholar 

  59. Pries, A.R., B. Reglin, and T.W. Secomb (2001b) Structural adaptation of vascular networks: role of the pressure response.Hypertension 38, 1476–1479.

    Article  Google Scholar 

  60. Pries, A.R., B. Reglin, and T.W. Secomb (2005) Remodelling of blood vessels: response of diameter and wall thickness to haemodynamic and metabolic stimuli.Hypertension 46, 725–731.

    Article  Google Scholar 

  61. Pries, A.R., and T.W. Secomb (2005) Control of blood vessel structure: insights from theoretical models.Am. J. Physiol. Heart Circ. Physiol. 288, 1010–1015.

    Article  Google Scholar 

  62. Pries, A.R., and T.W. Secomb (2005) Microvascular blood viscosity in vivo and the endothelial surface layer.Am. J. Physiol. Heart Circ. Physiol. 289, 2657–2664.

    Article  Google Scholar 

  63. Quarteroni, A., M. Tuveri, and A. Veneziani (2000) Computational vascular fluid dynamics: problems, models and methods.Comput. Visual. Sci. 2, 163– 197.

    Article  MATH  Google Scholar 

  64. Ribba, B., K. Marron, Z. Agur, T. Alarcon, and P.K. Maini (2005) A mathematical model of Doxorubicin treatment efficacy for non-Hodgkin’s lymphoma.Bull. Math. Biol.67, 79–99.

    Article  MathSciNet  Google Scholar 

  65. Salsbury, A.J., K. Burrage, and K. Hellmann (1970) Inhibition of metastatic spread by icrf159—selective deletion of a malignant characteristic.Br. Med. J. 4, 344–346.

    Google Scholar 

  66. Schmid-Schönbein, G.W. (1999) Biomechanics of microcirculatory blood perfusion.Ann. Rev. Biomed. Eng. 1, 73–102.

    Article  Google Scholar 

  67. Schoefl, G.I. (1963) Studies of inflammation III. Growing capillaries: their structure and permeability.Virchows Arch. Path. Anat.337, 97–141.

    Article  Google Scholar 

  68. 68. Secomb, T.W. (1995) Mechanics of blood flow in the microcirculation.The Society for Experimental Biology, 305–321.

    Google Scholar 

  69. Sherratt, J.A. and M.A.J. Chaplain (2001) A new mathematical model for avascular tumour growth.J. Math. Biol. 43, 291–312.

    Article  MATH  MathSciNet  Google Scholar 

  70. Sholley, M.M., G.P. Ferguson, H.R. Seibel, J.L. Montour, and J.D. Wilson (1984) Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells.Lab. Invest.51, 624–634.

    Google Scholar 

  71. Stéphanou, A., S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain (2005) Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies.Math. Comp. Model.41, 1137–1156.

    Article  MATH  Google Scholar 

  72. Stéphanou, A., S.R. McDougall, A.R.A. Anderson, and M.A.J. Chaplain (2006) Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis.Math. Comp. Model.44, 96–123.

    Article  MATH  Google Scholar 

  73. Sternlicht, M.D., and Z. Werb (2001) How matrix metalloproteinases regulate cell behavior.Annu. Rev. Cell. Dev. Biol. 17, 463–516.

    Article  Google Scholar 

  74. Stokes, C.L., and D.A. Lauffenburger (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis.J. Theor. Biol.152, 377–403.

    Article  Google Scholar 

  75. Sun, S., M.F. Wheeler, M. Obeyesekere, and P.W. Charles (2005) A deterministic model of growth factor induced angiogenesis.Bull. Math. Biol. 67 (15.2), 313–337.

    Article  MathSciNet  Google Scholar 

  76. Thomlinson, R.H., and L.H. Gray (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy.Br. J. Cancer 9, 539–549.

    Google Scholar 

  77. Tong, S., and F. Yuan (2001) Numerical simulations of angiogenesis in the cornea.Microvasc. Res.61, 14–27.

    Article  Google Scholar 

  78. Ward, J.P., and J.R. King (1997) Mathematical modelling of avascular tumour growth.IMA J. Math. Appl. Med. Biol.14, 36–69.

    Article  Google Scholar 

  79. Ward, J.P., and J.R. King (1999) Mathematical modelling of avascular tumour growth. (ii) Modelling growth saturation.IMA J. Math. Appl. Med. Biol. 16, 171–211.

    Article  MATH  Google Scholar 

  80. M.A. Moses, S. Huang, and D. Ingber (2000) Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells.J. Cell Sci. 113, 3979–3987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. McDougall .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

McDougall, S.R. (2008). Dynamically Adaptive Tumour Induced Angiogenesis The Impact of Flow on the Developing Capillary Plexus. In: Selected Topics in Cancer Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4713-1_15

Download citation

Publish with us

Policies and ethics