Skip to main content

Methods of Stochastic Geometry and Related Statistical Problems in the Analysis and Therapy of Tumour Growth and Tumour Driven Angiogenesis

  • Chapter
  • First Online:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosio, L., Capasso, V., Villa, E.: On the approximation of geometric densities of random closed sets. RICAM Report N. 2006–14, Linz, Austria (2006).

    Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  3. Anderson, A.R.A., Chaplain, M.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol.,60, 857–899 (1998).

    Article  MATH  Google Scholar 

  4. Araujo, A., Ginè, E.: The Central Limit Theorem for Real and Banach Valued Random Variables. John Wiley – Sons, New York (1980).

    MATH  Google Scholar 

  5. Avrami, M.: Kinetics of phase change. Part I, J. Chem. Phys.,7, 1103–112 (1939).

    Article  Google Scholar 

  6. Baddeley, A.J., Molchanov, I.S.: On the expected measure of a random set. In: Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets (Fontainebleau, 1996). World Sci. Publishing, River Edge, NJ, 3–20 (1997).

    Google Scholar 

  7. Bellomo, N., De Angelis, E., Preziosi L.: Multiscale modelling and mathematical problems related to tumour evolution and medical therapy. J. Theor. Med.,5, 111–136 (2004).

    Article  Google Scholar 

  8. Beneš, V., Rataj, J.: Stochastic Geometry. Kluwer, Dordrecht (2004).

    MATH  Google Scholar 

  9. Birdwell, C., Brasier, A., Taylor, L.: Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun.,97, 574–581 (1980).

    Article  Google Scholar 

  10. Bosq, D.: Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statistics,149, Springer-Verlag, New York (2000).

    Google Scholar 

  11. Burger, M., Capasso, V., Engl, H.: Inverse problems related to crystallization of polymers. Inverse Problems,15, 155–173 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. Burger, M., Capasso, V., Micheletti, A.: Optimal control of polymer morphologies. Journal of Engineering Mathematics,49, 339–358 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  13. Burger, M., Capasso, V., Pizzocchero, L.: Mesoscale averaging of nucleation and growth models. Multiscale Modeling and Simulation: a SIAM Interdisciplinary Journal.5, 564–592 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. Burger, M., Capasso, V., Salani, C.: Modelling multi-dimensional crystallization of polymers in interaction with heat transfer. Nonlinear Analysis: Real World Application,3, 139–160 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. Capasso, V. (ed): Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Mathematics in Industry, Vol. 2, Springer-Verlag, Heidelberg (2003).

    Google Scholar 

  16. Capasso, V., Micheletti, A.: Stochastic geometry and related statistical problems in Biomedicine. In: A. Quarteroni et al. (eds.) Complex Systems in Biomedicine. Springer, Milano, 36–69 (2006).

    Google Scholar 

  17. [CM07]Capasso, V., Micheletti, A.: Kernel-like estimators of the mean density of inhomogeneous fibre processes. In preparation (2007).

    Google Scholar 

  18. [CMo07]Capasso, V., Morale, D.: Stochastic modelling of tumour-induced angiogenesis. Preprint (2007).

    Google Scholar 

  19. Capasso, V., Villa, E.: Continuous and absolutely continuous random sets. Stoch. Anal. Appl.,24, 381–397 (2006a).

    Article  MATH  MathSciNet  Google Scholar 

  20. [CV06b]Capasso, V., Villa, E.: On the geometric densities of random closed sets. Stoch. Anal. Appl. 2007. In press.

    Google Scholar 

  21. Capasso, V., Villa, E.: On mean densities of inhomogeneous geometric processes arising in material science and medicine. Image Analysis and Stereology,26, 23–36 (2007).

    MATH  MathSciNet  Google Scholar 

  22. Chaplain, M.A.J., Anderson, A.R.A.: Modelling the growth and form of capillary networks. In: Chaplain, M.A.J. et al. (eds.) On Growth and Form. Spatio-temporal Pattern Formation in Biology. John Wiley – Sons, Chichester (1999).

    Google Scholar 

  23. Corada, M., Zanetta, L., Orsenigo, F., Breviario, F., Lampugnani, M.G., Bernasconi, S., Liao, F., Hicklin, D.J., Bohlen, P., Dejana, E.: A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood.100, 905–911 (2002).

    Article  Google Scholar 

  24. Crosby, C.V., Fleming, P., Zanetta, L., Corada, M., Giles, B., Dejana, E., Drake, C.: VE-cadherin is essential in the de novo genesis of blood vessels (vasculogenesis) in the allantoids. Blood,105, 2771–2776 (2005).

    Article  Google Scholar 

  25. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University press, Cambridge (1985).

    MATH  Google Scholar 

  26. Federer, H.: Geometric Measure Theory. Springer, Berlin (1996).

    MATH  Google Scholar 

  27. Folkman, J.: Tumour angiogenesis. Adv. Canc. Res.,19, 331–358 (1974).

    Article  Google Scholar 

  28. Folkman, J., Klagsbrun, M.: Angiogenic factors. Sci.,235, 442–447 (1987).

    Google Scholar 

  29. Gabrial, A.S., Krasnow, M.A.: Social interactions among epithelial cells during tracheal branching morphogenesis. Nature,441, 746–749 (2006).

    Article  Google Scholar 

  30. Hahn, U., Micheletti, A., Pohlink, R., Stoyan, D., Wendrock, H.: Stereological analysis and modeling of gradient structures. J. of Microscopy,195, 113–124 (1999).

    Article  Google Scholar 

  31. Hardle, W.: Smoothing Techniques. With Implementation in S, Springer-Verlag, New York (1991).

    Google Scholar 

  32. [Harr06]Harrington, H.A., et al.: A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors (2006). Preprint.

    Google Scholar 

  33. Jain, R.K., Carmeliet, P.F.: Vessels of Death or Life. Scientific American285, 38–45 (2001).

    Article  Google Scholar 

  34. Johnson, W.A., Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. A.I.M.M.E.,135, 416–458 (1939).

    Google Scholar 

  35. Kolmogorov, A.N.: On the statistical theory of the crystallization of metals. Bull. Acad. Sci. USSR, Math. Ser.1, 355–359 (1937).

    Google Scholar 

  36. Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis, Prentice-Hall, Englewood Cliffs, NJ, (1970).

    MATH  Google Scholar 

  37. Levine, H.A., Pamuk, S., Sleeman, B.D., Nilsen-Hamilton, M.: A mathematical model of capillary formation and development in tumour angiogenesis: penetration into the stroma. Bull. Math. Biol.,63, 801–863 (2001).

    Article  Google Scholar 

  38. Matheron, G.: Random Sets and Integral Geometry. John Wiley – Sons, New York (1975).

    MATH  Google Scholar 

  39. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biology,241, 564–589 (2006).

    Article  MathSciNet  Google Scholar 

  40. Møller, J.: Random Johnson-Mehl tessellations. Adv. Appl. Prob.,24, 814–844 (1992).

    Article  Google Scholar 

  41. Møller, J.: Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, Springer-Verlag, New York (1994).

    Google Scholar 

  42. Morale, D., Capasso, V., Ölschlaeger, K.: An interacting particle system modelling aggregation behavior: from individuals to populations, J. Math. Bio.50, 49–66 (2005).

    Article  MATH  Google Scholar 

  43. Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Prob. Th. Rel. Fields.82, 565–586 (1989).

    Article  MATH  Google Scholar 

  44. Paweletz, N., Kneirim, M.: Tumour related angiogenesis. Crit. Rev. Oncol. Haematol.,9, 197–242 (1989).

    Article  Google Scholar 

  45. Pestman, W.R.: Mathematical Statistics. An Introduction, Walter de Gruyter, Berlin, (1998).

    MATH  Google Scholar 

  46. Planck, M.J., and Sleeman, B.D.: A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biology,20, 135–181 (2003).

    Article  Google Scholar 

  47. Preziosi, L., Astanin, S.: Modelling the formation of capillaries. In: A. Quarteroni et al.(eds.) Complex Systems in Biomedicine. Springer, Milano, 109–145 (2006).

    Chapter  Google Scholar 

  48. Serini, G., et al.: Modeling the early stages of vascular network assembly. EMBO J.,22, 1771–1779 (2003).

    Article  Google Scholar 

  49. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, Chapman – Hall, London (1986).

    MATH  Google Scholar 

  50. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Application. John Wiley – Sons, New York (1995).

    Google Scholar 

  51. Sun, S., et al.: Nonlinear behaviors of capillary formation in a deterministic angiogenesis model. Nonlinear Analysis,63, e2237–e2246 (2005).

    Article  MATH  Google Scholar 

  52. Sun, S., et al.: A multiscale angiogenesis modeling using mixed finite element methods. SIAM J. on Multiscale Model Simul.,4, 1137–1167 (2005).

    Article  MATH  Google Scholar 

  53. Tong, S., and Yuan, F.: Numerical simulations of angiogenesis in the cornea. Microvascular Research,61, 14–27 (2001).

    Article  Google Scholar 

  54. Ubukata, T.: Computer modelling of microscopic features of molluscan shells. In: Sekimura, T. et al. (eds.) Morphogenesis and Pattern Formation in Biological Systems. Springer-Verlag, Tokyo, 355–368 (2003).

    Google Scholar 

  55. Zäahle, M.: Random processes of Hausdorff rectifiable closed sets. Math. Nachr.,108, 49–72 (1982).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Capasso .

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Capasso, V., Dejana, E., Micheletti, A. (2008). Methods of Stochastic Geometry and Related Statistical Problems in the Analysis and Therapy of Tumour Growth and Tumour Driven Angiogenesis. In: Selected Topics in Cancer Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4713-1_12

Download citation

Publish with us

Policies and ethics