Skip to main content

Need-Directed Design of Prostheses and Enabling Resources

  • Chapter
  • First Online:
Book cover Amputation, Prosthesis Use, and Phantom Limb Pain

Abstract

In this chapter, we address questions of prosthesis acceptance, design, and supporting resources from the perspective of consumer needs. Throughout, the observations presented are largely based on the experiences of approximately 250 individuals with upper limb absence, and are supported by the literature of the past 25 years. The choice to accept or reject a prosthesis is largely dictated by personal needs and is made in such a way so as to optimize quality of life. Prosthesis design should first focus on maximizing comfort, particularly by reducing the weight and improving the thermal properties of current models. Consumers are also interested in reduced costs, enhanced sensory feedback, and life-like dexterity and appearance. Ongoing initiatives and technological development to address these consumer design priorities are discussed. Lastly, perspectives on enabling healthcare and economic resources fundamental to the prescription and availability of prostheses are outlined. Clinical strategies to promote prosthesis acceptance are identified and consumer-directed recommendations for social support structures are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biddiss E, Chau T (2006) Electroactive polymeric sensors in hand prostheses, Bending response of an ionic polymer metal composite. Med Eng Phys 28:568–578

    Article  PubMed  Google Scholar 

  • Biddiss E, Chau T (2007a) Upper limb prosthetics: critical factors in device abandonment. Am Arch Phys Med Rehabil 86(12):977–987

    Article  Google Scholar 

  • Biddiss E, Chau T (2007b) The roles of predisposing characteristics, established need, and enabling resources on upper extremity prosthesis use and abandonment. Disabil Rehabil: Assist Technol 2(2):71–84

    Article  Google Scholar 

  • Biddiss E, Chau T (2007c) Upper extremity prosthesis use and abandonment: A survey of the last 25 years. Prosthet Orthot Int 31(3):236–257

    Article  PubMed  Google Scholar 

  • Biddiss E, Chau T (2008a) Multivariate prediction of upper limb prosthesis acceptance or rejection. Disabil Rehabil: Assist Technol 3(4):181–192

    Article  Google Scholar 

  • Biddiss E, Chau T (2008b) Dielectric elastomers as actuators for upper limb prosthetics, challenges and opportunities. Med Eng Phys 30(4):403–418

    Article  PubMed  Google Scholar 

  • Biddiss E, Beaton D, Chau T (2007) Consumer design priorities for upper limb prosthetics. Disabil Rehabil: Assist Technol 2(6):346–357

    Article  Google Scholar 

  • Bigelow J, Korth M, Jacobs J, Anger N, Riddle M, Gifford J (2004) A picture of amputees and the prosthetic situation in Haiti. Disabil Rehabil 26(4):246–252

    Article  PubMed  CAS  Google Scholar 

  • Branemark R, Branemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181

    PubMed  CAS  Google Scholar 

  • Caldwell DG, Tsagarakis N (2002) Biomimetic actuators in prosthetic and rehabilitation applications. Technol Health Care 10(2):107–120

    PubMed  CAS  Google Scholar 

  • Carpaneto J, Micera S, Zaccone F, Vecchi F, Dario P (2003) A sensorized thumb for force closed-loop control of hand neuroprostheses. IEEE Trans Neural Syst Rehabil Eng 11:346–353

    Article  PubMed  Google Scholar 

  • Chan ADC, Englehart KB (2003) Continuous classification of myoelectric signals for powered prostheses using gaussian mixture models. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society. doi: 10.1109/IEMBS.2003.1280510

  • Cranny A, Cotton DPJ, Chappell PH, Beeby SP, White NM (2005) Thick-film force and slip sensors for a prosthetic hand. Sens Actuators A 123:162–171

    Article  Google Scholar 

  • De Laurentis K, Mavroidis C (2002) Mechanical design of a shape memory alloy actuated prosthetic hand. Technol Health Care 10:91–106

    PubMed  Google Scholar 

  • Del Cura VO, Cunha FL, Aguiar ML, Cliquet A (2003) Study of the different types of actuators and mechanisms for upper limb prostheses. Artif Organs 27(6):506–516

    Article  Google Scholar 

  • dos Santos CML, da Cunha FL, Dynnikov VI (2003) The application of shape memory actuators in anthropomorphic upper limb prostheses. Artif Organs 27(5):473–477

    Article  PubMed  Google Scholar 

  • Fite KB, Withrow TJ, Shen X, Wait KW, Mitchell JE, Goldfarb M (2008) A gas-actuated anthropomorphic prosthesis for transhumeral amputees. IEEE Trans Robot 24(1):159–169

    Article  Google Scholar 

  • Gow DJ, Douglas W, Geggie C, Monteith E, Stewart D (2001) The development of the Edinburgh modular arm system. Proc Inst Mech Eng 215(3):291–298

    Article  CAS  Google Scholar 

  • Hoffmann KP, Ruff R (2007) Flexible dry surface-electrodes for ECG long-term monitoring. In: 29th annual international conference of IEEE engineering in medicine and biology society. doi: 10.1109/IEMBS.2007.4353650

  • Kargov A, Werner T, Pylatiuk C, Schulz S (2008) Development of a miniaturized hydraulic actuation system for artificial hands. Sens Actuators A Phys 141(2):548–557

    Article  Google Scholar 

  • Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253

    PubMed  CAS  Google Scholar 

  • Kyberd PJ, Light C, Chappell PH, Nightingale JM, Whatley D, Evans M (2001) The design of anthropomorphic prosthetic hands: a study of the Southampton Hand. Robotica 19:593–600

    Article  Google Scholar 

  • Kyberd PJ, Poulton AS, Sandsjo L, Jonsson S, Jones B, Gow D (2007) The ToMPAW modular prosthesis: A platform for research in upper-limb prosthetics. JPO J Prosthet Orthot 19(1):15–21

    Article  Google Scholar 

  • Matthews R, McDonald NJ, Hervieux P, Turner PJ, Steindorf MA (2007) A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state. In: 29th annual international conference of IEEE engineering in medicine and biology society. doi: 10.1109/IEMBS.2007.4353532

  • Mustafa SK, Yang G, Yeo SH, Lin W, Pham CB (2006) Development of a bio-inspired wrist prosthesis. In: 2006 IEEE conference on robotics, automation and mechatronics. doi: 10.1109/RAMECH.2006.252716

  • Price A, Jnifene A, Naguib HE (2006) Biologically inspired anthropomorphic arm and dextrous robot hand actuated by smart-material-based artificial muscles. In: Proceedings of the SPIE – The international society for optical engineering. doi: 10.1117/12.660471

  • Riso RR (1999) Strategies for providing upper extremity amputees with tactile and hand position feedback-moving closer to the bionic arm. Technol Health Care 7:401–409

    PubMed  CAS  Google Scholar 

  • Rogers JL (1998) Serving amputee patients in rural settings. Caring 17(9):32–33

    PubMed  CAS  Google Scholar 

  • Seow K (1988) Physiology of touch, grip, and gait. In: Webster J (ed) Tactile sensors for robotics and medicine. Wiley, New York

    Google Scholar 

  • Silva J, Heim W, Chau T (2005) A self-contained mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil 86(10):2066–2070

    Article  PubMed  Google Scholar 

  • Sitek AJ, Yamaguchi GT, Herring DE, Willems CJ, Boninger D, Boninger RM (2004) Development of an inexpensive upper-extremity prosthesis for use in developing countries. J Prosthet Orthot 16(3):94–102

    Article  Google Scholar 

  • The Open Prosthetics Project (2008) http://openprosthetics.org/. Accessed 10 Dec, 2008

  • Troyk PR, DeMichele GA, Kerns DA, Weir RF (2007) IMES: an implantable myoelectric sensor. In: Proceedings of the 29th annual international conference of the IEEE engineering in medicine and biology society. doi: 10.1109/IEMBS.2007.4352644

  • Tyc VL (1992) Psychosocial adaptation of children and adolescents with limb deficiencies, A review. Clin Psychol Rev 12:275–291

    Article  Google Scholar 

  • Uellendahl JE, Mandacina S, Ramdial S (2006) Custom silicone sockets for myoelectric prostheses. J Prosthet Orthot 18(2):35–40

    Article  Google Scholar 

  • Varni JW, Setoguchi Y (1993) Effects of parental adjustment on the adaptation of children with congenital or acquired limb deficiencies. J Dev Behav Pediatr 14(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Varni JW, Setoguchi Y, Rappaport LR, Talbot D (1992) Psychological adjustment and perceived social support in children with congenital/acquired limb deficiencies. J Behav Med 15(1):31–44

    Article  PubMed  CAS  Google Scholar 

  • Webster JB, Levy CE, Bryant PR, Prusakowski PE (2001) Sports and recreation for persons with limb deficiency. Arch Phys Med Rehabil 82(3):S38–S44

    Article  PubMed  CAS  Google Scholar 

  • Wong K (2006) Restoring lives with rapid prototyping. Cadalyst 23(7):16–18

    Google Scholar 

  • Wright FV, Hubbard S, Naumann S, Jutai J (2003) Evaluation of the validity of the prosthetic upper extremity functional index for children. Arch Phys Med Rehabil 84(4):518–527

    PubMed  Google Scholar 

  • Yang J, Pena Pitarch E, Abdel-Malek K, Patrick A, Lindkvist L (2004) A multi-fingered hand prosthesis. Mech Mach Theory 39:555–581

    Article  Google Scholar 

  • Zecca M, Cappiello G, Sebastiani F, Roccella S, Vecchi F, Carrozza MC et al (2004) Experimental analysis of the proprioceptive and exteroceptive sensors of an underactuated prosthetic hand. Lect Notes Control Inf Sci 306:233–242

    Article  Google Scholar 

  • Zollo L, Roccella S, Guglielmelli E, Carrozza MC, Dario P (2007) Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans Mechatron 12(4):418–429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Biddiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Biddiss, E. (2009). Need-Directed Design of Prostheses and Enabling Resources. In: Murray, C. (eds) Amputation, Prosthesis Use, and Phantom Limb Pain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87462-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87462-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-87461-6

  • Online ISBN: 978-0-387-87462-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics