Skip to main content

Integration of Genetic, Proteomic, and Metabolic Approaches in Tumor Cell Metabolism

  • Chapter
  • First Online:

Abstract

There now exists a resurgence of interest in and research into the role of altered cellular intermediary metabolism in the development and progression of cancer and other disease processes. The recent developments in molecular technology, molecular biology, molecular genetics, and proteomics provide new tools to investigate the involvement of the genetic and molecular factors that regulate the adaptation of the metabolism of malignant cells to meet the synthetic and bioenergetic requirements of the malignant process. Such didactic and technological capabilities that did not exist during the preceding generations of research in intermediary metabolism must be integrated with the biochemical/enzymological methods and principles of cellular enzyme activities and metabolic pathways. This requires that the contemporary and future investigators integrate the traditional cellular metabolic principles and methods with the molecular technological capabilities and didactic information to study the role of altered intermediary in malignancy. A guiding axiom is that “Genetic transformations and proteomic alterations will have little relevancy to tumor metabolism and other disease processes if the genetic/proteomic alterations are not manifested in altered and impaired cellular and metabolic function.” In this chapter we discuss some important principles of cellular metabolism and the approaches employed to determine the metabolic adaptations involved in malignancy. We integrate the areas of cellular intermediary metabolism with molecular genetics, proteomics, and metabolomics to provide the basis for elucidation of the genetic/molecular/metabolic factors in the development and progression of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Cooper, J.F., and Farid, I. 1963. The role of citric acid in the physiology of the prostate. A chromatographic study of citric acid cycle intermediates in benign and malignant prostatic tissue. J Surg Res 3:112–121.

    Article  CAS  PubMed  Google Scholar 

  • Costello, L.C., Liu, Y., Franklin, R.B., and Kennedy, M.C. 1997. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875–28881.

    Article  CAS  PubMed  Google Scholar 

  • Costello, L.C., Franklin, R.B., and Narayan, P. 1999. Citrate in the diagnosis of prostate cancer. Prostate 15:237–45.

    Article  Google Scholar 

  • Singh, K.K., Desouki, M.M., Franklin, R.B., and Costello, L.C. 2006. Mitochondrial Aconitase and Citrate Metabolism in Malignant and Nonmalignant Human Prostate Tissues. Mol Cancer 5:14.

    Article  PubMed  Google Scholar 

  • Warburg, O., Wind, F., and Negelein, E. 1926. Uber den Stoffwechsel von Tumoren im Korper. Klin Woch 5:829–832.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The cited studies of LCC and RBF described in this review were supported in part by NIH grants CA71207, CA21097, CA79903, and CA93443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie C. Costello .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Costello, L.C., Franklin, R.B. (2009). Integration of Genetic, Proteomic, and Metabolic Approaches in Tumor Cell Metabolism. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_5

Download citation

Publish with us

Policies and ethics