Skip to main content

Warburg and his Legacy

  • Chapter
  • First Online:
Mitochondria and Cancer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessi,D. R.,Sakamoto,K., andBayascas,J. R.2006. LKB1-dependent signaling pathways. Annu Rev Biochem,75:137–163.

    Article  CAS  Google Scholar 

  • Altenberg,B. andGreulich,K. O.2004. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics,84:1014–1020.

    Article  CAS  Google Scholar 

  • Baggetto,L. G.1992. Role of mitochondria in carcinogenesis. Eur J Cancer,29A:156–159.

    CAS  Google Scholar 

  • Bensaad,K.,Tsuruta,A.,Selak,M. A.,Vidal,M. N.,Nakano,K.,Bartrons,R.,Gottlieb,E., andVousden,K. H.2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell,126:107–120.

    Article  CAS  Google Scholar 

  • Bi,X.,Lin,Q.,Foo,T. W.,Joshi,S.,You,T.,Shen,H. M.,Ong,C. N.,Cheah,P. Y.,Eu,K. W., andHew,C. L.2006. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics,5:1119–1130.

    Article  CAS  Google Scholar 

  • Birnbaum,M. J.,Haspel,H. C., andRosen,O. M.1987. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science,235:1495–1498.

    Article  CAS  Google Scholar 

  • Boveri,T.1902. Ãœber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns., Vol. 35, Vehr. d. phys. med. Ges. zu Wurzburg. Wurzburg: 67–90.

    Google Scholar 

  • Boveri,T.1914. Zur Frage der Entstehung maligner Tumoren. Gustav Fischer Verlag.Jena:

    Google Scholar 

  • Brown,J.1962. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism,11:1098–1112.

    CAS  Google Scholar 

  • Bulavin,D. V. andFornace,A. J.,Jr. 2004. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res,92:95–118.

    Article  CAS  Google Scholar 

  • Bustamante,E. andPedersen,P. L.1977. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA,74:3735–3739.

    Article  CAS  Google Scholar 

  • Bustamante,E.,Morris,H. P., andPedersen,P. L.1981. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem,256:8699–8704.

    CAS  Google Scholar 

  • Carew,J. S. andHuang,P.2002. Mitochondrial defects in cancer. Mol Cancer,1:9.

    Article  Google Scholar 

  • Chen, Z., Lu, W., Garcia-Prieto, C., and Huang, P. 2007. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr

    Google Scholar 

  • Cuezva,J. M.,Krajewska,M.,de Heredia,M. L.,Krajewski,S.,Santamaria,G.,Kim,H.,Zapata,J. M.,Marusawa,H.,Chamorro,M., andReed,J. C.2002. The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res,62:6674–6681.

    CAS  Google Scholar 

  • Cuezva,J. M.,Chen,G.,Alonso,A. M.,Isidoro,A.,Misek,D. E.,Hanash,S. M., andBeer,D. G.2004. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis,25:1157–1163.

    Article  CAS  Google Scholar 

  • Dang,C. V.,Lewis,B. C.,Dolde,C.,Dang,G., andShim,H.1997. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr,29:345–354.

    Article  CAS  Google Scholar 

  • De Lena,M.,Lorusso,V.,Latorre,A.,Fanizza,G.,Gargano,G.,Caporusso,L.,Guida,M.,Catino,A.,Crucitta,E.,Sambiasi,D., andMazzei,A.2001. Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer,37:364–368.

    Article  CAS  Google Scholar 

  • Di Cosimo,S.,Ferretti,G.,Papaldo,P.,Carlini,P.,Fabi,A., andCognetti,F.2003. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc),39:157–174.

    Article  CAS  Google Scholar 

  • Ebert,B. L.,Firth,J. D., andRatcliffe,P. J.1995. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem,270:29083–29089.

    Article  CAS  Google Scholar 

  • Elstrom,R. L.,Bauer,D. E.,Buzzai,M.,Karnauskas,R.,Harris,M. H.,Plas,D. R.,Zhuang,H.,Cinalli,R. M.,Alavi,A.,Rudin,C. M., andThompson,C. B.2004. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res,64:3892–3899.

    Article  CAS  Google Scholar 

  • Fantin,V. R.,St-Pierre,J., andLeder,P.2006. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell,9:425–434.

    Article  CAS  Google Scholar 

  • Fearon,E. R. andVogelstein,B.1990. A genetic model for colorectal tumorigenesis. Cell,61:759–767.

    Article  CAS  Google Scholar 

  • Firth,J. D.,Ebert,B. L., andRatcliffe,P. J.1995. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem,270:21021–21027.

    Article  CAS  Google Scholar 

  • Flier,J. S.,Mueckler,M. M.,Usher,P., andLodish,H. F.1987. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science,235:1492–1495.

    Article  CAS  Google Scholar 

  • Floridi,A.,Paggi,M. G.,Marcante,M. L.,Silvestrini,B.,Caputo,A., andDe Martino,C.1981. Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumor cells. J Natl Cancer Inst,66:497–499.

    CAS  Google Scholar 

  • Floridi,A.,Bruno,T.,Miccadei,S.,Fanciulli,M.,Federico,A., andPaggi,M. G.1998. Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant Ehrlich ascites tumor cells through modulation of energy metabolism. Biochem Pharmacol,56:841–849.

    Article  CAS  Google Scholar 

  • Gambhir,S. S.2002. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer,2:683–693.

    Article  CAS  Google Scholar 

  • Gatenby,R. A. andGillies,R. J.2004. Why do cancers have high aerobic glycolysis? Nat Rev Cancer,4:891–899.

    Article  CAS  Google Scholar 

  • Gerber,J.,Mühlenhoff,U., andLill,R.2003. An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep,4:906–911.

    Article  CAS  Google Scholar 

  • Geschwind,J. F.,Ko,Y. H.,Torbenson,M. S.,Magee,C., andPedersen,P. L.2002. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res,62:3909–3913.

    CAS  Google Scholar 

  • Grover-McKay,M.,Walsh,S. A.,Seftor,E. A.,Thomas,P. A., andHendrix,M. J.1998. Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res,4:115–120.

    Article  CAS  Google Scholar 

  • Hawkins,R. A. andPhelps,M. E.1988. PET in clinical oncology. Cancer Metastasis Rev,7:119–142.

    Article  CAS  Google Scholar 

  • Herrmann, P. C. and Herrmann, E. C. 2007. Oxygen metabolism and a potential role for cytochrome c oxidase in the Warburg effect. J Bioenerg Biomembr

    Google Scholar 

  • Hervouet,E.,Demont,J.,Pecina,P.,Vojtiskova,A.,Houstek,J.,Simonnet,H., andGodinot,C.2005. A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis. Carcinogenesis,26:531–539.

    Article  CAS  Google Scholar 

  • Ingram,D. K.,Zhu,M.,Mamczarz,J.,Zou,S.,Lane,M. A.,Roth,G. S., anddeCabo,R.2006. Calorie restriction mimetics: an emerging research field. Aging Cell,5:97–108.

    Article  CAS  Google Scholar 

  • Inoki,K.,Zhu,T., andGuan,K. L.2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell,115:577–590.

    Article  CAS  Google Scholar 

  • Isidoro,A.,Martinez,M.,Fernandez,P. L.,Ortega,A. D.,Santamaria,G.,Chamorro,M.,Reed,J. C., andCuezva,J. M.2004. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J,378:17–20.

    Article  CAS  Google Scholar 

  • Isidoro,A.,Casado,E.,Redondo,A.,Acebo,P.,Espinosa,E.,Alonso,A. M.,Cejas,P.,Hardisson,D.,Fresno Vara,J. A.,Belda-Iniesta,C.,Gonzalez-Baron,M., andCuezva,J. M.2005. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis,26:2095–2104.

    Article  CAS  Google Scholar 

  • Jelluma,N.,Yang,X.,Stokoe,D.,Evan,G. I.,Dansen,T. B., andHaas-Kogan,D. A.2006. Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res,4:319–330.

    Article  CAS  Google Scholar 

  • Jones,R. G.,Plas,D. R.,Kubek,S.,Buzzai,M.,Mu,J.,Xu,Y.,Birnbaum,M. J., andThompson,C. B.2005. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell,18:283–293.

    Article  CAS  Google Scholar 

  • Kahn,B. B.,Alquier,T.,Carling,D., andHardie,D. G.2005. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab,1:15–25.

    Article  CAS  Google Scholar 

  • Kim,J. W.,Tchernyshyov,I.,Semenza,G. L., andDang,C. V.2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab,3:177–185.

    Article  Google Scholar 

  • Ko,Y. H.,Pedersen,P. L., andGeschwind,J. F.2001. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett,173:83–91.

    Article  CAS  Google Scholar 

  • Ko,Y. H.,Smith,B. L.,Wang,Y.,Pomper,M. G.,Rini,D. A.,Torbenson,M. S.,Hullihen,J., andPedersen,P. L.2004. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun,324:269–275.

    Article  CAS  Google Scholar 

  • Koukourakis,M. I.,Giatromanolaki,A.,Sivridis,E.,Gatter,K. C., andHarris,A. L.2005. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia,7:1–6.

    Article  CAS  Google Scholar 

  • Lane,M. A.1998. 2-Deoxy-D-Glucose Feeding in Rats Mimics Physiologic Effects of Calorie Restriction. JOURNAL OF ANTI-AGING MEDICINE,1:327–336.

    CAS  Google Scholar 

  • Lu,H.,Forbes,R. A., andVerma,A.2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem,277:23111–23115.

    Article  CAS  Google Scholar 

  • Lu,H.,Dalgard,C. L.,Mohyeldin,A.,McFate,T.,Tait,A. S., andVerma,A.2005. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J Biol Chem,280:41928–41939.

    Article  CAS  Google Scholar 

  • Ma, W., Sung, H. J., Park, J. Y., Matoba, S., and Hwang, P. M. 2007. A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr

    Google Scholar 

  • Macdonald,F. andFord,C. H. J.1992. Oncogenes and tumor Suppressor genes (Medical perspectives series), BIOS Scientfic Publishers.Oxford: 112.

    Google Scholar 

  • Manchester,K.1997. The quest by three giants of science for an understanding of cancer. Endeavour,21:72–76.

    Article  CAS  Google Scholar 

  • Maschek,G.,Savaraj,N.,Priebe,W.,Braunschweiger,P.,Hamilton,K.,Tidmarsh,G. F.,De Young,L. R., andLampidis,T. J.2004. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res,64:31–34.

    Article  CAS  Google Scholar 

  • Mathupala,S. P.,Heese,C., andPedersen,P. L.1997. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem,272:22776–22780.

    Article  CAS  Google Scholar 

  • Matoba,S.,Kang,J. G.,Patino,W. D.,Wragg,A.,Boehm,M.,Gavrilova,O.,Hurley,P. J.,Bunz,F., andHwang,P. M.2006. p53 regulates mitochondrial respiration. Science,312:1650–1653.

    Article  CAS  Google Scholar 

  • Maxwell,P. H.,Dachs,G. U.,Gleadle,J. M.,Nicholls,L. G.,Harris,A. L.,Stratford,I. J.,Hankinson,O.,Pugh,C. W., andRatcliffe,P. J.1997. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA,94:8104–8109.

    Article  CAS  Google Scholar 

  • McKusick, V. A., Kniffin, C. L., Tiller, G. E., Wright, M. J., Hamosh, A., Antonarakis, S. E., Rasmussen, S. A., Smith, M., Brennan, P., and Rasooly, R. S. 2007. Online mendelian inheritance in man: von Hippel-Lindau syndrome (OMIM 193300).http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=193300,

  • Mühlenhoff,U.,Richhardt,N.,Ristow,M.,Kispal,G., andLill,R.2002. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet,11:2025–2036.

    Article  Google Scholar 

  • Natali,P. G.,Salsano,F.,Viora,M.,Nista,A.,Malorni,W.,Marolla,A., andDe Martino,C.1984. Inhibition of aerobic glycolysis in normal and neoplastic lymphoid cells induced by Lonidamine [1-(2,4-dichlorobenzyl)-I-H-indazol-3-carboxylic acid]. Oncology,41 (Suppl.1): 7–14.

    Article  Google Scholar 

  • Osthus,R. C.,Shim,H.,Kim,S.,Li,Q.,Reddy,R.,Mukherjee,M.,Xu,Y.,Wonsey,D.,Lee,L. A., andDang,C. V.2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem,275:21797–21800.

    Article  CAS  Google Scholar 

  • Oudard,S.,Carpentier,A.,Banu,E.,Fauchon,F.,Celerier,D.,Poupon,M. F.,Dutrillaux,B.,Andrieu,J. M., andDelattre,J. Y.2003. Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol,63:81–86.

    Article  Google Scholar 

  • Papandreou,I.,Cairns,R. A.,Fontana,L.,Lim,A. L., andDenko,N. C.2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab,3:187–197.

    Article  CAS  Google Scholar 

  • Pasteur, L. 1861. Influence de l’oxygene sur le developpement de la levure et la fermentation alcoolique. Bulletin de la Societe Chimique de Paris, p. 79–80.

    Google Scholar 

  • Pedersen,P. L.1978. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res,22:190–274.

    CAS  Google Scholar 

  • Pelicano,H.,Martin,D. S.,Xu,R. H., andHuang,P.2006a. Glycolysis inhibition for anticancer treatment. Oncogene,25:4633–4646.

    Article  CAS  Google Scholar 

  • Pelicano,H.,Xu,R. H.,Du,M.,Feng,L.,Sasaki,R.,Carew,J. S.,Hu,Y.,Ramdas,L.,Hu,L.,Keating,M. J.,Zhang,W.,Plunkett,W., andHuang,P.2006b. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol,175:913–923.

    Article  CAS  Google Scholar 

  • Petros,J. A.,Baumann,A. K.,Ruiz-Pesini,E.,Amin,M. B.,Sun,C. Q.,Hall,J.,Lim,S.,Issa,M. M.,Flanders,W. D.,Hosseini,S. H.,Marshall,F. F., andWallace,D. C.2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA,102:719–724.

    Article  CAS  Google Scholar 

  • Raghunand,N.,Gatenby,R. A., andGillies,R. J.2003. Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol,76 (S11–S22.Spec No. 1):

    Article  Google Scholar 

  • Ramanathan,A.,Wang,C., andSchreiber,S. L.2005. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA,102:5992–5997.

    Article  CAS  Google Scholar 

  • Rathmell,J. C.,Fox,C. J.,Plas,D. R.,Hammerman,P. S.,Cinalli,R. M., andThompson,C. B.2003. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol,23:7315–7328.

    Article  CAS  Google Scholar 

  • Reznick,R. M. andShulman,G. I.2006. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol,574:33–39.

    Article  CAS  Google Scholar 

  • Robey,I. F.,Lien,A. D.,Welsh,S. J.,Baggett,B. K., andGillies,R. J.2005. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia,7:324–330.

    Article  CAS  Google Scholar 

  • Sakashita,M.,Aoyama,N.,Minami,R.,Maekawa,S.,Kuroda,K.,Shirasaka,D.,Ichihara,T.,Kuroda,Y.,Maeda,S., andKasuga,M.2001. Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features. Eur J Cancer,37:204–209.

    Article  CAS  Google Scholar 

  • Schulz,T. J.,Thierbach,R.,Voigt,A.,Drewes,G.,Mietzner,B. H.,Steinberg,P.,Pfeiffer,A. F., andRistow,M.2006. Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem,281:977–981.

    Article  CAS  Google Scholar 

  • Semenza,G. L.2001. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell,107:1–3.

    Article  CAS  Google Scholar 

  • Semenza, G. L. 2007. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr

    Google Scholar 

  • Semenza,G. L. andWang,G. L.1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol,12:5447–5454.

    CAS  Google Scholar 

  • Semenza,G. L.,Roth,P. H.,Fang,H. M., andWang,G. L.1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem,269:23757–23763.

    CAS  Google Scholar 

  • Shaw,R. J.2006. Glucose metabolism and cancer. Curr Opin Cell Biol,18:598–608.

    Article  CAS  Google Scholar 

  • Shim,H.,Dolde,C.,Lewis,B. C.,Wu,C. S.,Dang,G.,Jungmann,R. A.,Dalla-Favera,R., andDang,C. V.1997. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA,94:6658–6663.

    Article  CAS  Google Scholar 

  • Singh,D.,Banerji,A. K.,Dwarakanath,B. S.,Tripathi,R. P.,Gupta,J. P.,Mathew,T. L.,Ravindranath,T., andJain,V.2005. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol,181:507–514.

    Article  Google Scholar 

  • Singh,K. K.2004. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann NY Acad Sci,1019:260–264.

    Article  CAS  Google Scholar 

  • Smith,T. A.,Sharma,R. I.,Thompson,A. M., andPaulin,F. E.2006. Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med,47:1525–1530.

    CAS  Google Scholar 

  • Sols,A. andCrane,R. K.1954. Substrate specificity of brain hexokinase. J Biol Chem,210:581–595.

    CAS  Google Scholar 

  • Stiles,B.,Groszer,M.,Wang,S.,Jiao,J., andWu,H.2004. PTENless means more. Dev Biol,273:175–184.

    Article  CAS  Google Scholar 

  • Stryer,L.1995. Biochemistry. W. H. Freeman.New York:

    Google Scholar 

  • Taylor,R. W. andTurnbull,D. M.2005. Mitochondrial DNA mutations in human disease. Nat Rev Genet,6:389–402.

    Article  CAS  Google Scholar 

  • Thierbach,R.,Schulz,T. J.,Isken,F.,Voigt,A.,Mietzner,B.,Drewes,G.,von Kleist-Retzow,J. C.,Wiesner,R. J.,Magnuson,M. A.,Puccio,H.,Pfeiffer,A. F.,Steinberg,P., andRistow,M.2005. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span, and tumor growth in mice. Hum Mol Genet,14:3857–3864.

    Article  CAS  Google Scholar 

  • Timofeev,O.,Lee,T. Y., andBulavin,D. V.2005. A subtle change in p38 MAPK activity is sufficient to suppress in vivo tumorigenesis. Cell Cycle,4:118–120.

    CAS  Google Scholar 

  • Vogelstein,B. andKinzler,K. W.1993. The multistep nature of cancer. Trends Genet,9:138–141.

    Article  CAS  Google Scholar 

  • Warburg, O. 1930. The Metabolism of Tumours. London: Constable.

    Google Scholar 

  • Warburg, O. 1931. The oxygen-transferring ferment of respiration. Nobel Lecture,

    Google Scholar 

  • Warburg,O.1956a. On the origin of cancer cells. Science,123:309–314.

    Article  CAS  Google Scholar 

  • Warburg,O.1956b. On respiratory impairment in cancer cells. Science,124:269–270.

    CAS  Google Scholar 

  • Warburg,O.,Posener,K., andNegelein,E.1924. Ãœber den Stoffwechsel der Tumoren (On metabolism of tumors). Biochemische Zeitschrift,152:319–344.

    Google Scholar 

  • Warburg, O., Wind, F., and Negelein, E. 1926. The metabolism of tumors in the body. J Gen Physiol 519–530.

    Google Scholar 

  • Weinhouse,S.1956. On respiratory impairment in cancer cells. Science,124:267–269.

    Article  CAS  Google Scholar 

  • Wu,M.,Neilson,A.,Swift,A. L.,Moran,R.,Tamagnine,J.,Parslow,D.,Armistead,S.,Lemire,K.,Orrell,J.,Teich,J.,Chomicz,S., andFerrick,D. A.2007. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol,292:C125–C136.

    Article  CAS  Google Scholar 

  • Xu,R. H.,Pelicano,H.,Zhou,Y.,Carew,J. S.,Feng,L.,Bhalla,K. N.,Keating,M. J., andHuang,P.2005. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res,65:613–621.

    Article  CAS  Google Scholar 

  • Younes,M.,Lechago,L. V., andLechago,J.1996. Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clin Cancer Res,2:1151–1154.

    CAS  Google Scholar 

  • Zhang,X. D.,Deslandes,E.,Villedieu,M.,Poulain,L.,Duval,M.,Gauduchon,P.,Schwartz,L., andIcard,P.2006. Effect of 2-deoxy-d.-glucose on various malignant cell lines in vitro Anticancer Res,26:3561–3566.

    CAS  Google Scholar 

  • Zhou,S.,Kachhap,S., andSingh,K. K.2003. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis,18:287–292.

    Article  CAS  Google Scholar 

  • Zhu,Z.,Jiang,W.,McGinley,J. N., andThompson,H. J.2005. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res,65:7023–7030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ristow .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ristow, M., Schulz, T.J. (2009). Warburg and his Legacy. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_2

Download citation

Publish with us

Policies and ethics