Skip to main content
Book cover

Petunia pp 225–245Cite as

Combinatorial Action of Petunia MADS Box Genes and Their Protein Products

  • Chapter

Abstract

During the last two decades enormous progress has been made in our understanding of the genes that control the identity of floral organs. These genes appear to be members of a large family of MADS box transcription factors that are well conserved across angiosperms. Research using Petunia as a model plant has contributed substantially to the discovery of novel MADS box gene functions and to our understanding of how these MADS box transcription factors act. The proteins function together in dimeric and possibly larger protein complexes to control the expression of target genes. This combinatorial action forms the basis of the ABC model for floral organ development and underlies many other developmental processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akam, M. (1983) Decoding the Drosophila complexes. Trends Biochem. Sci. 8, 173–177.

    Article  Google Scholar 

  • Alvarez Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., de Pouplana, L.R., Martinez Castilla, L. and Yanofsky, M.F. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci., USA 97, 5328–5333.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M. and van Tunen, A.J. (1992) Differential expression of two MADS box genes in wild-type and mutant Petunia flowers. Plant Cell 4, 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Colombo, L. and van Tunen, A.J. (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 4, 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Angenent, G.C., Busscher, M., Franken, J., Dons, H.J.M. and van Tunen, A.J. (1995a) Functional interaction between the homeotic genes fbp1 and pMADS1 during Petunia floral organogenesis. Plant Cell 7, 507–516.

    Google Scholar 

  • Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M. and van Tunen, A.J. (1995b) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569–1582.

    Google Scholar 

  • Angenent, G.C. and Colombo, L. (1996) Molecular control of ovule development. Trends Plant Sci. 1, 228–232.

    Google Scholar 

  • Aronheim, A., Zundi, E., Hennemann, H., Elledge, S.J. and Karin, M. (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17, 3094–3102.

    CAS  PubMed  Google Scholar 

  • Becker, A., Kaufmann, K., Freialdenhoven, A., Vincent, C., Li, M.A., Saedler, H. and Theissen, G. (2002) A novel MADS-box gene subfamily with a sister-group relationship to-class B floral homeotic genes. Molec. Genet. Genom. 266, 942–950.

    Article  CAS  Google Scholar 

  • Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619.

    Article  CAS  PubMed  Google Scholar 

  • Cartolano, M., Castillo, R., Efremova, N., Kuckenberg, M., Zethof, J., Gerats, T., Schwarz Sommer, Z. and Vandenbussche, M. (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genetics 39, 901–905.

    Article  CAS  PubMed  Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: Genetic interactions controlling flower development. Nature 353, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, L., Franken, J., Koetje, E., Van-Went, J., Dons, H.J.M., Angenent, G.C. and van Tunen, A.J. (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859–1868.

    Article  CAS  PubMed  Google Scholar 

  • Colombo, L., Franken, J., van der Krol, A.R., Wittich, P.E., Dons, H.J.M. and Angenent, G.C. (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9, 703–715.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H.C., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B. and Benfey, P.N. (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316, 421–425.

    Article  CAS  PubMed  Google Scholar 

  • Davies, B., Egea Cortines, M., Silva, E.D., Saedler, H. and Sommer, H. (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15, 4330–4343.

    CAS  PubMed  Google Scholar 

  • Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H. and Schwarz-Sommer, Z. (1999) PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18, 4023–4034.

    Article  CAS  PubMed  Google Scholar 

  • De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouze, P., Theissen, G. and Van de Peer, Y. (2003) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J. Molec. Evol. 56, 573–586.

    Article  PubMed  Google Scholar 

  • De Folter, S., Immink, R.G.H., Kieffer, M., Parenicova, L., Henz, S.-R., Weigel, D., Busscher, M., Kooiker, M., Colombo, L., Kater, M.M., Davies, B. and Angenent, G.C. (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433.

    Article  PubMed  Google Scholar 

  • De Folter, S. and Angenent, G.C. (2006) Trans meets cis in MADS science. Trends Plant Sci. 11, 224–231

    Article  PubMed  Google Scholar 

  • De Folter, S., Shchennikova, A.V., Franken, J., Busscher, M., Baskar, R., Grossniklaus, U., Angenent, G.C. and Immink, R.G.H. (2006) A B-sister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. l 47, 934–947.

    Article  Google Scholar 

  • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940.

    Article  CAS  PubMed  Google Scholar 

  • Egea Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370–5379.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Immink, R.G.H., Shchennikova, A., Busscher Lange, J. and Angenent, G.C. (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15, 914–925.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Busscher, J., Franken, J., Gerats, T., Vandenbussche, M., Angenent, G.C. and Immink, R.G.H. (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16, 1490–1505.

    Article  CAS  PubMed  Google Scholar 

  • Ferrario, S., Shchennikova, A.V., Franken, J., Immink, R.G.H. and Angenent, G.C. (2006) Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 140, 890–898.

    Article  CAS  PubMed  Google Scholar 

  • Fields, S. and Song, O.-K. (1989) A novel genetic system to detect protein–protein interactions. Nature 340, 245–246.

    Article  CAS  PubMed  Google Scholar 

  • Fornara, F., Marziani, G., Mizzi, L., Kater, M. and Colombo, L. (2003) MADS-box genes controlling flower development in rice. Plant Biol. 5, 16–22.

    Article  CAS  Google Scholar 

  • Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez Dee, Z., Altamura, M.M., Colombo, L. and Kater, M.M. (2004) Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol. 135, 2207–2219.

    Article  CAS  PubMed  Google Scholar 

  • Gehring, W.J. and Hiromi, Y. (1986) Homeotic genes and the homeobox. Ann. Rev. Genet. 20, 147–173.

    Article  CAS  PubMed  Google Scholar 

  • Gerats, A.G.M., Kaye, C., Collins, C. and Malmberg, R.L. (1988) Polyamine levels in Petunia genotypes with normal and abnormal floral morphologies. Plant Physiol. 86, 390–393.

    Article  CAS  PubMed  Google Scholar 

  • Immink, R.G.H., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Campagne, M.M.L. and Angenent, G.C. (1999) A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development 126, 5117–5126.

    CAS  PubMed  Google Scholar 

  • Immink, R.G.H. (2002) Characterisation of Plant MADS Box Transcription Factor Protein-Protein Interactions. Ph.D. Thesis, Wageningen University, Wageningen.

    Google Scholar 

  • Immink, R.G.H. and Angenent, G.C. (2002) Transcription factors do it together: The hows and whys of studying protein-protein interactions. Trends Plant Sci. 7, 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Immink, R.G.H., Gadella, T.W.J., Jr., Ferrario, S., Busscher, M. and Angenent, G.C. (2002) Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci., USA 99, 2416–2421.

    Article  CAS  PubMed  Google Scholar 

  • Immink, R.G.H., Ferrario, S., Busscher Lange, J., Kooiker, M., Busscher, M. and Angenent, G.C. (2003) Analysis of the petunia MADS-box transcription factor family. Molec. Genet. Genom. 268, 598–606.

    CAS  Google Scholar 

  • Jofuku, K.D., de Boer, B.G.W., van Montagu, M. and Okamuro, J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene Apetala2. Plant Cell 6, 1211–1255.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S. and Takatsuji, H. (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J. 32, 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Campagne, M.M.V. and Angenent, G.C. (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen, M., Elomaa, P., Uimari, A., Albert, V.A., Yu, D. and Teeri, T.H. (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12, 1893–1902.

    Article  CAS  PubMed  Google Scholar 

  • Krizek, B.A. and Meyerowitz, E.M. (1996) Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc. Natl. Acad. Sci., USA 93, 4063–4070.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Jeon, J.S., An, K., Moon, Y.H., Lee, S., Chung, Y.Y. and An, G. (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217, 904–911.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Moon, Y.H., An, G. and Jang, S.K. (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Molec. Biol. 44, 513–527.

    Article  CAS  Google Scholar 

  • Maes, T., van der Steene, N., Zethof, J., Karimi, M., D'Hauw, M., Mares, G., van Montagu, M. and Gerats, T. (2001) Petunia Ap2-like genes and their role in flower and seed development. Plant Cell 13, 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F. (1992) Molecular characterizaiton of the Arabidopsis floral homeotic gene Apetala1. Nature 360, 273–277.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T. (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Moon, Y., Jung, J., Kang, H. and An, G. (1999a) Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Molec. Biol. 40, 167–177.

    Google Scholar 

  • Moon, Y., Kang, H., Jung, J., Jeon, J., Sung, S. and An, G. (1999b) Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120, 1193–1203.

    Google Scholar 

  • Nam, J., Kim, J., Lee, S., An, G., Ma, H. and Nei, M. (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc. Natl. Acad. Sci., USA 101, 1910–1915.

    Article  CAS  PubMed  Google Scholar 

  • Nesi, N., Debeaujon, I., Jond, C., Stewart, A.-J., Jenkins, G.-I., Caboche, M. and Lepiniec, L. (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14, 2463–2479.

    Article  CAS  PubMed  Google Scholar 

  • Norman, C., Runswick, M., Pollock, R. and Treisman, R. (1988) Isolation and properties of complementary DNA clones encoding SRF a transcription factor that binds to the C-Fos serum response element. Cell 55, 989–1003.

    Article  CAS  PubMed  Google Scholar 

  • Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS World. Plant Cell 15, 1538–1551.

    Article  CAS  PubMed  Google Scholar 

  • Passmore, S., Maine, G.T., Christ, R.E.C. and Tye, B.K. (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of Mat-Alpha cells. J. Molec. Biol. 204, 593–606.

    Article  CAS  PubMed  Google Scholar 

  • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200–203.

    Article  CAS  PubMed  Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. and Cormier, M.J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci., USA 93, 4793–4798.

    Article  CAS  PubMed  Google Scholar 

  • Rijpkema, A.S., Royaert, S., Zethof, J., van der Weerden, G., Gerats, T. and Vandenbussche, M. (2006) Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819–1832.

    Article  CAS  PubMed  Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jurgens, G. and Laux, T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644.

    Article  CAS  PubMed  Google Scholar 

  • Shchennikova, A.V., Shulga, O.A., Immink, R., Skryabin, K.G. and Angenent, G.C. (2004) Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 134, 1632–1641.

    Article  CAS  PubMed  Google Scholar 

  • Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H. and Schwarz Sommer, Z. (1990) Deficiens a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. EMBO J. 9, 605–613.

    CAS  PubMed  Google Scholar 

  • Souer, E., van der Krol, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Devel. 125, 733–742.

    CAS  Google Scholar 

  • Stuurman, J., Jaggi, F. and Kuhlemeier, C. (2002) Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Devel. 16, 2213–2218.

    Article  CAS  PubMed  Google Scholar 

  • Theissen, G. and Saedler, H. (2001) Plant biology: Floral quartets. Nature 409, 469–471.

    Article  CAS  PubMed  Google Scholar 

  • Tonaco-Nougalli, I.A.N., Borst, J.W., de Vries, S.C., Angenent, G.C. and Immink, R.G.H. (2006) In vivo imaging of MADS-box transcription factor interactions. J. Exp. Bot. 57, 33–42

    Article  Google Scholar 

  • Tsuchimoto, S., van der Krol, A.R. and Chua, N.-H. (1993) Ectopic expression of pMADS3 in transgenic Petunia phenocopies the Petunia blind mutant. Plant Cell 5, 843–853.

    Article  CAS  PubMed  Google Scholar 

  • Uimari, A., Kotilainen, M., Elomaa, P., Yu, D., Albert, V.A. and Teeri, T.H. (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc. Natl. Acad. Sci., USA 101, 15817–15822.

    Google Scholar 

  • Vallade, J., Maizonnier, D. and Cornu, A. (1987) Floral morphogenesis in petunia. I. Analysis of a mutant with a staminate corolla. Can. J. Bot. 65, 761–764.

    Article  Google Scholar 

  • van Der Krol, A.R., Brunelle, A., Tsuchimoto, S. and Chua, N.H. (1993) Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Devel. 7, 1214–1228.

    Article  PubMed  Google Scholar 

  • Vandenbussche, M., Zethof, J., Souer, E., Koes, R., Tornielli, G.B., Pezzotti, M., Ferrario, S., Angenent, G.C. and Gerats, T. (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15, 2680–2693.

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche, M., Zethof, J., Royaert, S., Weterings, K. and Gerats, T. (2004) The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • West, A.G., Causier, B.E., Davies, B. and Sharrocks, A.D. (1998) DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucl. Acids Res. 26, 5277–5287.

    Article  CAS  PubMed  Google Scholar 

  • Wittich, P.E., de Heer, R.F., Cheng, X.F., Kieft, H., Colombo, L., Angenent, G.C. and van Lammeren, A.A.M. (1999) Immunolocalization of the petunia Foral Binding Proteins 7 and 11 during seed development in wild-type and expression mutants of Petunia hybrida. Protoplasma 208, 224–229.

    Article  CAS  Google Scholar 

  • Yang, Y.Z., Fanning, L. and Jack, T. (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33, 47–59.

    Article  PubMed  Google Scholar 

  • Yang, Y.Z. and Jack, T. (2004) Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Molec. Biol. 55, 45–59.

    Article  CAS  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Angenent, G.C., Immink, R.G. (2009). Combinatorial Action of Petunia MADS Box Genes and Their Protein Products. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_11

Download citation

Publish with us

Policies and ethics