Skip to main content

Cdk5, a Journey from Brain to Pain: Lessons from Gene Targeting

  • Chapter
  • First Online:
  • 443 Accesses

Abstract

Cyclin-dependent kinase 5 (Cdk5) is a ubiquitously expressed proline-directed serine/threonine kinase. The monomeric form of Cdk5 is inactive and requires binding with its activator p35 and/or p39 to execute its kinase activity. Cdk5 was initially identified by purification from bovine brain extract and termed “Cdk5” because of its nucleotide sequence homology with human CDC2. Since the discovery of this kinase in 1992, it has been extensively studied by different laboratories to gain insights into its multiple roles in many important physiological systems. It is interesting to note that this kinase, which was initially considered as a postmitotic, neuron-specific kinase, has also been recognized as a key molecule in many cellular functions in non-neuronal tissues. We have now determined that this kinase was not only misnamed, as it neither requires binding to cyclin for activation, nor is it critically essential in the cell cycle, but was also not specific to neurons, as previously thought. Gene targeting is a very powerful tool for understanding the function of genes in human development and disease; in 2007, the Nobel Prize in Physiology or Medicine was awarded for introducing principles of specific gene modifications in mice by the use of embryonic stem cells. After the generation of the first gene-targeted mouse, our knowledge of specific gene functions has been immensely augmented by making use of gene-targeting techniques. In the last decade, we and others have employed functional genomics tools for a better understanding of Cdk5 biology. In this chapter, we will discuss the lessons learned from different strategies undertaken to understand Cdk5 biology.

Cyclin-dependent kinase 5 (Cdk5) is an ubiquitously expressed proline-directed serine/threonine kinase. The monomeric form of Cdk5 is inactive and requires binding with its activator p35 and/or p39 to execute its kinase activity. Cdk5 was initially identified by purification from bovine brain extract and termed “Cdk5” because of its nucleotide sequence homology with human CDC2 [1,2]. Since the discovery of this kinase in 1992, it has been extensively studied by different laboratories to gain insights into its multiple roles and its involvement in molecular mechanisms in many important physiological systems. It is interesting to note this kinase, which was initially considered as a postmitotic, neuron-specific kinase [3], has also been recognized as a key molecule in many cellular functions in non-neuronal tissues [4]. We have now determined that this kinase was not only misnamed, as it neither requires binding to cyclin for activation, nor is it critically essential in the cell cycle, but also cast aside the myth of its neuronal specificity.

Due to the colossal power of gene targeting in understanding the gene function and its importance in studying human health and disease, this year’s (2007) Nobel prize in Physiology or Medicine has been jointly awarded to Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies for introducing principles of specific gene modifications in mice by the use of embryonic stem cells. After the generation of first gene-targeted mouse [5,6] in their labs, our knowledge of understanding a specific gene function has immensely augmented by making use of gene-targeting techniques. In the last decade, we and others have employed functional genomics tools for a better understanding of Cdk5 biology. In this chapter we will discuss the lessons learned from different strategies undertaken to understand Cdk5 biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lew, J., Beaudette, K., Litwin, C. M., & Wang, J. H. (1992) J Biol Chem 267, 13383–13390.

    PubMed  CAS  Google Scholar 

  2. Meyerson, M., Enders, G. H., Wu, C. L., Su, L. K., Gorka, C., Nelson, C., Harlow, E., & Tsai, L. H. (1992) Embo J 11, 2909–2917.

    PubMed  CAS  Google Scholar 

  3. Dhavan, R. & Tsai, L. H. (2001) Nat Rev Mol Cell Biol 2, 749–759.

    Article  PubMed  CAS  Google Scholar 

  4. Rosales, J. L. & Lee, K. Y. (2006) Bioessays 28, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  5. Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., & Smithies, O. (1987) Nature 330, 576–578.

    Article  PubMed  CAS  Google Scholar 

  6. Thomas, K. R. & Capecchi, M. R. (1987) Cell 51, 503–512.

    Article  PubMed  CAS  Google Scholar 

  7. Ohshima, T., Ward, J. M., Huh, C. G., Longenecker, G., Veeranna, Pant, H. C., Brady, R. O., Martin, L. J., & Kulkarni, A. B. (1996) Proceedings of the National Academy of Sciences of the United States of America 93, 11173–11178.

    Article  PubMed  CAS  Google Scholar 

  8. Ohshima, T., Ogawa, M., Takeuchi, K., Takahashi, S., Kulkarni, A. B., & Mikoshiba, K. (2002) J Neurosci 22, 4036–4044.

    PubMed  CAS  Google Scholar 

  9. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B., & Herrup, K. (1998) J Neurosci 18, 6370–6377.

    PubMed  CAS  Google Scholar 

  10. Kesavapany, S., Lau, K. F., McLoughlin, D. M., Brownlees, J., Ackerley, S., Leigh, P. N., Shaw, C. E., & Miller, C. C. (2001) Eur J Neurosci 13, 241–247.

    PubMed  CAS  Google Scholar 

  11. Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M., & Tsai, L. H. (2000) Curr Biol 10, 363–372.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka, T., Serneo, F. F., Tseng, H. C., Kulkarni, A. B., Tsai, L. H., & Gleeson, J. G. (2004) Neuron 41, 215–227.

    Article  PubMed  CAS  Google Scholar 

  13. Fu, A. K., Ip, F. C., Fu, W. Y., Cheung, J., Wang, J. H., Yung, W. H., & Ip, N. Y. (2005) Proceedings of the National Academy of Sciences of the United States of America 102, 15224–15229.

    Article  PubMed  CAS  Google Scholar 

  14. Cheung, Z. H., Chin, W. H., Chen, Y., Ng, Y. P., & Ip, N. Y. (2007) PLoS Biol 5, e63.

    Article  PubMed  Google Scholar 

  15. Ohshima, T., Gilmore, E. C., Longenecker, G., Jacobowitz, D. M., Brady, R. O., Herrup, K., & Kulkarni, A. B. (1999) J Neurosci 19, 6017–6026.

    PubMed  CAS  Google Scholar 

  16. Gilmore, E. C. & Herrup, K. (1997) Curr Biol 7, R231–R234.

    Article  PubMed  CAS  Google Scholar 

  17. Goldowitz, D., Cushing, R. C., Laywell, E., D'Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D., & Curran, T. (1997) J Neurosci 17, 8767–8777.

    PubMed  CAS  Google Scholar 

  18. Gonzalez, J. L., Russo, C. J., Goldowitz, D., Sweet, H. O., Davisson, M. T., & Walsh, C. A. (1997) J Neurosci 17, 9204–9211.

    PubMed  CAS  Google Scholar 

  19. Howell, B. W., Hawkes, R., Soriano, P., & Cooper, J. A. (1997) Nature 389, 733–737.

    Article  PubMed  CAS  Google Scholar 

  20. Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., & Mikoshiba, K. (1995) Neuron 14, 899–912.

    Article  PubMed  CAS  Google Scholar 

  21. Sheldon, M., Rice, D. S., D'Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., & Curran, T. (1997) Nature 389, 730–733.

    Article  PubMed  CAS  Google Scholar 

  22. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., & Davisson, M. T. (1996) Mamm Genome 7, 798–802.

    Article  PubMed  CAS  Google Scholar 

  23. Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., & Walsh, C. A. (1997) Neuron 19, 239–249.

    Google Scholar 

  24. Yoneshima, H., Nagata, E., Matsumoto, M., Yamada, M., Nakajima, K., Miyata, T., Ogawa, M., & Mikoshiba, K. (1997) Neurosci Res 29, 217–223.

    Article  PubMed  CAS  Google Scholar 

  25. Dernoncourt, C., Ruelle, D., & Goffinet, A. M. (1991) Genomics 11, 1167–1169.

    Article  PubMed  CAS  Google Scholar 

  26. Goffinet, A. M. & Dernoncourt, C. (1991) Mamm Genome 1, 100–103.

    Article  PubMed  CAS  Google Scholar 

  27. Ohshima, T., Nagle, J. W., Pant, H. C., Joshi, J. B., Kozak, C. A., Brady, R. O., & Kulkarni, A. B. (1995) Genomics 28, 585–588.

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka, T., Veeranna, Ohshima, T., Rajan, P., Amin, N. D., Cho, A., Sreenath, T., Pant, H. C., Brady, R. O., & Kulkarni, A. B. (2001) J Neurosci 21, 550–558.

    PubMed  CAS  Google Scholar 

  29. Lew, J., Huang, Q. Q., Qi, Z., Winkfein, R. J., Aebersold, R., Hunt, T., & Wang, J. H. (1994) Nature 371, 423–426.

    Article  PubMed  CAS  Google Scholar 

  30. Tsai, L. H., Delalle, I., Caviness, V. S., Jr., Chae, T., & Harlow, E. (1994) Nature 371, 419–423.

    Google Scholar 

  31. Chae, T., Kwon, Y. T., Bronson, R., Dikkes, P., Li, E., & Tsai, L. H. (1997) Neuron 18, 29–42.

    Article  PubMed  CAS  Google Scholar 

  32. Ohshima, T., Ogawa, M., Veeranna, Hirasawa, M., Longenecker, G., Ishiguro, K., Pant, H. C., Brady, R. O., Kulkarni, A. B., & Mikoshiba, K. (2001) Proceedings of the National Academy of Sciences of the United States of America 98, 2764–2769.

    Article  PubMed  CAS  Google Scholar 

  33. Hallows, J. L., Chen, K., DePinho, R. A., & Vincent, I. (2003) J Neurosci 23, 10633–10644.

    PubMed  CAS  Google Scholar 

  34. Takahashi, S., Ohshima, T., Cho, A., Sreenath, T., Iadarola, M. J., Pant, H. C., Kim, Y., Nairn, A. C., Brady, R. O., Greengard, P., et al. (2005) Proceedings of the National Academy of Sciences of the United States of America 102, 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  35. Ahlijanian, M. K., Barrezueta, N. X., Williams, R. D., Jakowski, A., Kowsz, K. P., McCarthy, S., Coskran, T., Carlo, A., Seymour, P. A., Burkhardt, J. E., et al. (2000) Proceedings of the National Academy of Sciences of the United States of America 97, 2910–2915.

    Article  PubMed  CAS  Google Scholar 

  36. Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., & Tsai, L. H. (2003) Neuron 40, 471–483.

    Article  PubMed  CAS  Google Scholar 

  37. Fischer, A., Sananbenesi, F., Pang, P. T., Lu, B., & Tsai, L. H. (2005) Neuron 48, 825–838.

    Article  PubMed  CAS  Google Scholar 

  38. Hallows, J. L., Iosif, R. E., Biasell, R. D., & Vincent, I. (2006) J Neurosci 26, 2738–2744.

    Article  PubMed  CAS  Google Scholar 

  39. Sananbenesi, F., Fischer, A., Wang, X., Schrick, C., Neve, R., Radulovic, J., & Tsai, L. H. (2007) Nature neuroscience 10, 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  40. Amin, N. D., Albers, W., & Pant, H. C. (2002) J Neurosci Res 67, 354–362.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng, Y. L., Li, B. S., Amin, N. D., Albers, W., & Pant, H. C. (2002) Eur J Biochem 269, 4427–4434.

    Article  PubMed  CAS  Google Scholar 

  42. Zheng, Y. L., Kesavapany, S., Gravell, M., Hamilton, R. S., Schubert, M., Amin, N., Albers, W., Grant, P., & Pant, H. C. (2005) Embo J 24, 209–220.

    Article  PubMed  CAS  Google Scholar 

  43. Patzke, H., Maddineni, U., Ayala, R., Morabito, M., Volker, J., Dikkes, P., Ahlijanian, M. K., & Tsai, L. H. (2003) J Neurosci 23, 2769–2778.

    PubMed  CAS  Google Scholar 

  44. Tang, D., Yeung, J., Lee, K. Y., Matsushita, M., Matsui, H., Tomizawa, K., Hatase, O., & Wang, J. H. (1995) J Biol Chem 270, 26897–26903.

    Article  PubMed  CAS  Google Scholar 

  45. Humbert, S., Dhavan, R., & Tsai, L. (2000) J Cell Sci 113 (Pt 6), 975–983.

    PubMed  CAS  Google Scholar 

  46. Humbert, S., Lanier, L. M., & Tsai, L. H. (2000) Neuroreport 11, 2213–2216.

    Article  PubMed  CAS  Google Scholar 

  47. Ko, J., Humbert, S., Bronson, R. T., Takahashi, S., Kulkarni, A. B., Li, E., & Tsai, L. H. (2001) J Neurosci 21, 6758–6771.

    PubMed  CAS  Google Scholar 

  48. Takahashi, S., Saito, T., Hisanaga, S., Pant, H. C., & Kulkarni, A. B. (2003) J Biol Chem 278, 10506–10515.

    Article  PubMed  CAS  Google Scholar 

  49. Dymecki, S. M. (1996) Proceedings of the National Academy of Sciences of the United States of America 93, 6191–6196.

    Article  PubMed  CAS  Google Scholar 

  50. Orban, P. C., Chui, D., & Marth, J. D. (1992) Proceedings of the National Academy of Sciences of the United States of America 89, 6861–6865.

    Article  PubMed  CAS  Google Scholar 

  51. Hirasawa, M., Ohshima, T., Takahashi, S., Longenecker, G., Honjo, Y., Veeranna, Pant, H. C., Mikoshiba, K., Brady, R. O., & Kulkarni, A. B. (2004) Proceedings of the National Academy of Sciences of the United States of America 101, 6249–6254.

    Article  PubMed  CAS  Google Scholar 

  52. Ohshima, T., Hirasawa, M., Tabata, H., Mutoh, T., Adachi, T., Suzuki, H., Saruta, K., Iwasato, T., Itohara, S., Hashimoto, M., et al. (2007) Development 134, 2273–2282.

    Google Scholar 

  53. Hawasli, A. H., Benavides, D. R., Nguyen, C., Kansy, J. W., Hayashi, K., Chambon, P., Greengard, P., Powell, C. M., Cooper, D. C., & Bibb, J. A. (2007) Nature neuroscience 10, 880–886.

    Google Scholar 

  54. Pareek, T. K., Keller, J., Kesavapany, S., Pant, H. C., Iadarola, M. J., Brady, R. O., & Kulkarni, A. B. (2006) Proceedings of the National Academy of Sciences of the United States of America 103, 791–796.

    Article  PubMed  CAS  Google Scholar 

  55. Pareek, T. K. & Kulkarni, A. B. (2006) Cell Cycle 5, 585–588.

    Article  PubMed  CAS  Google Scholar 

  56. Pareek, T. K., Keller, J., Kesavapany, S., Agarwal, N., Kuner, R., Pant, H. C., Iadarola, M. J., Brady, R. O., & Kulkarni, A. B. (2007) Proceedings of the National Academy of Sciences of the United States of America 104, 660–665.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Roscoe Brady, Harish Pant, Elias Utreras, Akira Futatsugi, Veeranna, and Vinod Yaragudri for a critical reading of this chapter and significant contribution to our Cdk5 studies described in this chapter, and Harry Grant for editorial assistance. This work was supported by funds from the Divisions of Intramural Research of the National Institute of Dental and Craniofacial Research and the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok B. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pareek, T.K., Kulkarni, A.B. (2008). Cdk5, a Journey from Brain to Pain: Lessons from Gene Targeting. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_15

Download citation

Publish with us

Policies and ethics