Skip to main content

Cyclin-Dependent Kinase 5 and Insulin Secretion

  • Chapter
  • First Online:
Book cover Cyclin Dependent Kinase 5 (Cdk5)

Abstract

Cyclin-dependent kinase 5 (Cdk5) is emerging as a multifunctional kinase involved in regulating numerous cellular processes. Lately, Cdk5 has also emerged as a key controller of regulated membrane fusion in secretory cells. The pancreatic β-cell is highly specialized to secrete insulin in response to elevated glucose concentrations in the blood. The final biochemical events leading to insulin release from the β-cell are governed by a secretion apparatus that is similar to the presynaptic machinery mediating synaptic transmission in neuronal networks. We now summarize recent developments in the field of Cdk5 and regulated exocytosis and also present some novel findings regarding Cdk5’s effect on insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bach S, Knockaert M, Reinhardt J, Lozach O, Schmitt S, et al. (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219

    Article  PubMed  CAS  Google Scholar 

  • Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD (2004) Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem 279:41495–41503

    Article  PubMed  CAS  Google Scholar 

  • Barg S, Eliasson L, Renstrom E, Rorsman P (2002) A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse β-cells. Diabetes 51 Suppl 1:S74–S82

    Article  Google Scholar 

  • Berggren PO, Leibiger IB (2006) Novel aspects on signal-transduction in the pancreatic β-cell. Nutr Metab Cardiovasc Dis.16 Suppl 1:S7–S10

    Article  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18:29–42

    Article  PubMed  CAS  Google Scholar 

  • Cheung ZH, Fu AKY, Ip NY (2006) Synaptic roles of Cdk5: Implications in higher cognitive functions and neurodegenerative diseases. Neuron 50:13–18

    Article  PubMed  CAS  Google Scholar 

  • Dean PM (1973) Ultrastructural morphometry of the pancreatic β-cell. Diabetologia 9:115–119

    Article  PubMed  CAS  Google Scholar 

  • Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, Rizo J (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382

    Article  PubMed  CAS  Google Scholar 

  • Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA 104:2697–2702

    Article  PubMed  CAS  Google Scholar 

  • Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of Fusion Pore Dynamics During Exocytosis by Munc18. Science 291:875–878

    Article  PubMed  CAS  Google Scholar 

  • Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, et al. (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J Biol Chem 274:4027–4035

    Article  PubMed  CAS  Google Scholar 

  • Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, De Camilli P (2001) Amphiphysin 1 binds the cyclin-dependent kinase (cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J Biol Chem 276:8104–8110

    Article  PubMed  CAS  Google Scholar 

  • Garcia EP, Gatti E, Butler M, Burton J, De Camilli P (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA 91:2003–2007

    Article  PubMed  CAS  Google Scholar 

  • Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–680

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351

    Article  PubMed  CAS  Google Scholar 

  • Hata Y and Südhof TC (1995) A novel ubiquitous form of Munc-18 interacts with multiple syntaxins. Use of the yeast two-hybrid system to study interactions between proteins involved in membrane traffic. J Biol Chem 270:13022–13028

    Article  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs – engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Chapman ER (2006) Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu Rev Biophys Biomol Struct 35:135–160

    Article  PubMed  CAS  Google Scholar 

  • Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, et al. (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21:6758–6771

    PubMed  CAS  Google Scholar 

  • Lazaro JB, Kitzmann M, Poul MA, Vandromme M, Lamb NJ, et al. (1997) Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cell Sci 110:1251–1260

    PubMed  CAS  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin dependent kinase 5 at synapses. Proc Natl Acad Sci USA 101:546–551

    Article  PubMed  CAS  Google Scholar 

  • Leibiger IB, Leibiger B, Berggren PO (2002) Insulin feedback action on pancreatic β-cell function. FEBS Lett 532:1–6

    Article  PubMed  CAS  Google Scholar 

  • Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276:34199–34205

    Article  PubMed  CAS  Google Scholar 

  • Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca2+-dependent exocytosis. J Biol Chem 279:29534–29541

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic β-cells. Phil Trans R Soc B 360:2211–2225

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Kozlov MM, McMahon HT (2007) How Synaptotagmin promotes membrane fusion. Science 316:1205–1208

    Article  PubMed  CAS  Google Scholar 

  • Martin TFJ (2003) Tuning exocytosis for speed: fast and slow modes. Biochem Biophy Acta 1641:157–165

    Article  CAS  Google Scholar 

  • Misura KMS, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362

    Article  PubMed  CAS  Google Scholar 

  • Morgan A, Burgoyne RD, Barclay JW, Craig TJ, Prescott GR, Ciufo LF, Evans GJ, Graham ME (2005) Regulation of exocytosis by protein kinase C. Biochem Soc Trans 33:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna, Pant HC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178

    Article  PubMed  CAS  Google Scholar 

  • Pevsner J, Hsu SC, Scheller RH (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA 91:1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Philpott A, Porro EB, Kirschner MW, Tsai LH (1997) The role of cyclin dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev 11:1409–1421

    Article  PubMed  CAS  Google Scholar 

  • Pobbati AV, Stein A, Fasshauer D (2006) N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–676

    Article  PubMed  CAS  Google Scholar 

  • Rorsman P, Renström E (2003) Insulin granule dynamics in pancreatic β-cells. Diabetologia 46:1029–1045

    Article  PubMed  CAS  Google Scholar 

  • Rosales JL, Ernst JD, Hallows J, Lee KY (2004) GTP-dependent secretion from neutrophils is regulated by Cdk5. J Biol Chem 279:53932–53936

    Article  PubMed  CAS  Google Scholar 

  • Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. BioEssays 28:1023–1034

    Google Scholar 

  • Rose T, Efendic S, Rupnik M (2007) Ca2+-secretion coupling is impaired in diabetic Goto Kakizaki rats. J Gen Physiol 129(6):493–508

    Article  PubMed  CAS  Google Scholar 

  • Sahlgren CM, Mikhailov A, Vaittinen S, Pallari HM, Kalimo H, et al. (2003) Cdk5 regulates the organization of Nestin and its association with p35. Mol Cell Biol 23:5090–5106

    Article  PubMed  CAS  Google Scholar 

  • Saxena R, Voight BF, Lyssenko V,. Burtt NP, de Bakker PIW, et al. (2007) Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Published Online April 26, 2007 Science DOI: 10.1126/science.1142358

    Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants. Published Online April 26, 2007 Science DOI: 10.1126/science.1142382

    Google Scholar 

  • Sharma M, Hanchate NK, Tyagi RK, Sharma P (2007) Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem Biophys Res Commun May 4; [Epub ahead of print]

    Google Scholar 

  • Shen S, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–195

    Article  PubMed  CAS  Google Scholar 

  • Shuang R, Zhang L, Fletcher A, Groblewski GE, Pevsner J, et al. (1998) Regulation of Munc-18/syntaxin 1A interaction by cyclin-dependent kinase 5 in nerve endings. J Biol Chem 273:4957–4966

    Article  PubMed  CAS  Google Scholar 

  • Smith DS, Tsai LH (2002) Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol 12:28–36

    Article  PubMed  Google Scholar 

  • Snyder DA; Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation. Cell Biochem Biophys 45:111–123

    Article  PubMed  CAS  Google Scholar 

  • Speier S, Rupnik M (2003) A novel approach to in situ characterization of pancreatic β-cells. Pflugers Arch 446:553–558

    Article  PubMed  CAS  Google Scholar 

  • Speier S, Yang SB, Sroka K, Rose T, Rupnik M (2005) KATP-channels in β-cells in tissue slices are directly modulated by millimolar ATP. Mol Cell Endocrinol 230:51–58

    Article  PubMed  CAS  Google Scholar 

  • Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-Mediated Coupling Reduces {beta}-Cell Heterogeneity, Confines the Stimulating Glucose Concentration Range, and Affects Insulin Release Kinetics. Diabetes 56:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, et al. (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics Published online: 26 April 2007 | doi:10.1038/ng2043

    Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993a) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  Google Scholar 

  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993b) A protein assembly disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  Google Scholar 

  • Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, Hansra G, McClure SJ, Sarcevic B, Boadle RA, Larsen MR, Cousin MA, Robinson PJ (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5:701–710

    Article  PubMed  CAS  Google Scholar 

  • Tellam JT, McIntosh S, James DE (1995) Molecular identification of two novel Munc-18 isoforms expressed in non-neuronal tissues. J Biol Chem 270:5857–58631

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa K, Sunada S, Lu YF, Oda Y, Kinuta M, Ohshima T, Saito T, Wei FY, Matsushita M, Li ST, Tsutsui K, Hisanaga S, Mikoshiba K, Takei K, Matsui H. (2003) Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J Cell Biol 163:813–824

    Article  PubMed  CAS  Google Scholar 

  • Ubeda M, Kemp DM, Habener JF (2004) Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic β-cells. Endocrinology 145:3023–3031

    Article  PubMed  CAS  Google Scholar 

  • Ubeda M, Rukstalis JM, Habener JF (2006) Inhibition of cyclin-dependent protein kinase 5 activity protects pancreatic β cells from glucotoxicity. J Biol Chem 281:28858–28864

    Article  PubMed  CAS  Google Scholar 

  • Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, et al. (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Ferraro F, Back N, Eipper BA, Mains RE (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117:4739–4748

    Article  PubMed  CAS  Google Scholar 

  • Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676

    Article  PubMed  CAS  Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) Replication of Genome-Wide Association Signals in U.K. Samples Reveals Risk Loci for Type 2 Diabetes. Published Online April 26, 2007 Science DOI: 10.1126/science.1142364

    Google Scholar 

Download references

Acknowledgments

Our own work presented here has been supported by funding to one or more of the authors by the following grant agencies, to which we are sincerely thankful: The Swedish Research Council, The Family Erling-Persson Foundation, The Novo Nordisk Foundation, Berth von Kantzow's Foundation, Funds from Karolinska Institutet, The Swedish Diabetes Association, EFSD, Eurodia and The Slovenian Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Bark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bark, C., Rupnik, M., Jevsek, M., Mandic, S.A., Berggren, PO. (2008). Cyclin-Dependent Kinase 5 and Insulin Secretion. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_11

Download citation

Publish with us

Policies and ethics