Skip to main content

Hydrogel Nanocomposites: Biomedical Applications, Biocompatibility, and Toxicity Analysis

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Hydrogel nanocomposites are an important class of biomaterials that can be utilized in applications such as drug delivery, tissue engineering, and hyperthermia treatment. The incorporation of nanoparticles into a hydrogel matrix can provide unique properties including remote actuation and can also improve properties such as mechanical strength. Since hydrogel nanocomposites have been proposed as implantable biomaterials, it is important to analyze and understand the response of the body to these novel materials. This chapter covers the background, definitions, and potential applications of hydrogels and hydrogel nanocomposites. It also covers the various types of hydrogel nanocomposites as defined by the nanoparticulates embedded in the systems which include clay, metallic, magnetic, and semiconducting nanoparticles. The specific concerns of the biocompatibility analysis of hydrogel nanocomposites are discussed along with the specific biocompatibility results of the nanoparticulates incorporated into the hydrogel matrices as well as the biocompatibility of the hydrogels themselves. The limited data available on the biocompatibility of hydrogel nanocomposites is also presented. Overall, currently investigated hydrogel systems with known biocompatibility may have the potential to provide a “shielding” effect for the nanoparticulates in the hydrogel nanocomposites allowing them to be safer materials than the nanoparticulates alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amarnath LP, Srinivas A, Ramamurthi A (2006) In vitro hemocompatibility testing of UV-modified hyaluonan hydrogels. Biomaterials 27:1416–1424

    Article  CAS  Google Scholar 

  • Bajpai AK (2007) Blood protein adsorption onto macroporous semi-interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (PHEMA) and assessment of in vitro blood compatibility. Polym Inter 56:231–244

    Article  CAS  Google Scholar 

  • Bajpai AK, Shrivastava M (2002) Water sorption dynamics of a binary copolymeric hydrogel of 2-hydroyethyl methacrylate (HEMA). J Biomater Sci Polymer Edn 13:237–256

    Article  CAS  Google Scholar 

  • Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel-polymer nanocomposites. Macromolecules 38:9216–9220

    Article  CAS  Google Scholar 

  • Barbucci R, Leione G, Magnani A, Montanaro L, Arciola CR, Peluso G, Petillo O (2002) Cu2+- and Ag+- complexes with a hyaluronane-based hydrogel. J Mater Chem 12:3084–3092

    Article  CAS  Google Scholar 

  • Bekiari V, Pagonis K, Bokias G, Panagiotis L (2004) Study of poly(N,N-demethacrylamide)/CdS nanocomposite organic/inorganic gels. Langmuir 20:7972–7975

    Article  CAS  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  CAS  Google Scholar 

  • Cheng FU, Si CH, Tand YU, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomater 26:729–738

    Article  CAS  Google Scholar 

  • Costatini A, Luciani G, Annunziata G, Silvestri B, Branda F (2006) Swelling properties and bioactivity of silica gel/pHEMA nanocomposites. J Mater Sci 17:319–325

    Article  Google Scholar 

  • Degirmenbasi N, Kalyon DM, Birinci E (2006) Biocomposite of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloid Surf B: Biointerfaces 48:42–49

    Article  CAS  Google Scholar 

  • De Groot CJ, Van Luyn MJA, Van Dijk-Wolthuis WNE, Cadee JA, Plantinga JA, Otter WD, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomater 22:1197–1203

    Article  Google Scholar 

  • De Queiroz AAA, Ferraz HG, Abraham GA, Fernandez MM, Bravo AL, San Roman J (2002) Development of new hydroactive dressing based on chitosan membranes: characterization and in vivo behavior. J Biomed Mat Res A 64A(1):147–154

    Google Scholar 

  • Fenglan X, Yubao L, Xuejiang W, Jie W, Aiping Y (2004) Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) hydrogel biocomposite. J Mater Sci 39:5669–5672

    Article  Google Scholar 

  • Frimpong RA, Hilt JZ (2007) Hydrogel nanocomposites for intelligent therapeutics. In: Peppas NA, Hilt JZ, Thomas JB (eds) Nanotechnology in therapeutics: current technology and applications. Horizon Press, Norwich, pp 241–256

    Google Scholar 

  • Frimpong RA, Fraser S, Hilt JZ (2006) Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J Biomed Mat Res A 80A(1):1–6

    Article  Google Scholar 

  • Gattas-Asfura KM, Zheng Y, Micic M, Snedaker M, Ji X, Sui G, Orbulescu J, Andreoloulos FM, Pham SM, Wang C, Leblac RM (2003) Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. J Phys Chem B 107:10464–10469

    Article  CAS  Google Scholar 

  • Giordano C, Sanginario V, Ambrosio L, Di Silvio L, Santin M (2006) Chemical–physical characterization and in vitro preliminary biological assessment of hyaluronic acid benzyl ester-hydroyapatite composite. J Biomater App 20:237–252

    Article  CAS  Google Scholar 

  • Grassmann O, Lobmann P (2004) Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups. Biomaterials 25:277–282

    Article  CAS  Google Scholar 

  • Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci: Mater Med 15:493–496

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancements of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    Article  CAS  Google Scholar 

  • Hanks CT, Wataha JC, Sun Z (1996) In vitro models of biocompatibility: a review. Dental Mater 12:186–193

    CAS  Google Scholar 

  • Haraguchi K, Li HJ (2005) Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composite of poly(N-isopropylacrylamide) and clay. Macromolecules 35: 10162–10171

    Article  CAS  Google Scholar 

  • Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromol 36:5732–5741

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7:3267–3275

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Del Rev 43:3–12

    Article  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O-Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomater 27:4661–4670

    Article  CAS  Google Scholar 

  • Kim BC, Spinks G, Too CO, Wallace GG, Bae YH (2000) Preparation and characterization of processable conducting polymer-hydrogel composites. React Funct Polym 44:31–40

    Article  CAS  Google Scholar 

  • Kim DK, Zhang Y, Voit W, Rao KV, Kehr J, Bjelke B, Muhummed M (2001) Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scripta Mater 44:1713–1717

    Article  CAS  Google Scholar 

  • Kimura M, Takai M, Ishihara K (2006) Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. J Biomed Mater Res A 80A:45–54

    Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nanolett 5:331–338

    Article  CAS  Google Scholar 

  • Le WF, Chen YC (2006) Effects of intercalated hydrotalcite on drug release behavior for poly(acylic acid-co-N-isopropyl acrylamide)/intercalated hydrotalcite hydrogels. Europ Polym J 42:1634–1642

    Article  Google Scholar 

  • Lee WF, Fu YT (2002) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660

    Article  Google Scholar 

  • Lee WF, Ju LL (2004) Effect of the intercalation agent content of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. J Appl Polym Sci 94: 74–82

    Article  CAS  Google Scholar 

  • Liang L, Liu J, Gong X (2000) Thermosensitive poly(N-isopropylacrylamide)-clay nanocomposite with enhanced temperature response. Langmuir 16:9895–9899

    Article  CAS  Google Scholar 

  • Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2006) Preparation and characterization of smart magnetic hydrogels and its use for drug release. J Magn Magn Mater 304:e397–e399

    Article  CAS  Google Scholar 

  • Ma J, Xu Y, Zhang Q, Zha L, Liang B (2007) Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly(N-isopropyl acrylamide) crosslinked by clay. Colloi Polym Sci 285:479–484

    Article  CAS  Google Scholar 

  • Millon LE, Wan WK (2005) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B: Appl Biomater 79:245–253

    Google Scholar 

  • Muller K, Skepper JN, Pasfai M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH (2007) Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28:1629–1642

    Article  Google Scholar 

  • Nakabayashi N, Williams DF (2003) Preparation of non-thrombogenic materials using 2-methacryloyloxyethyl phosphorylcholine. Biomater 24:2431–2435

    Article  CAS  Google Scholar 

  • Pardo-Yissar V, Bourenko T, Wasserman J, Willner I (2002) Solvent-switchable photoelectrochemistry in the presence of CdS-nanoparticle/acrylamide hydrogels. Adv Mater 14:670–673

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  • Pizzoferrato A, Ciapetti G, Stea S, Cenni E, Arciola CR, Granchi D, Savarino L (1994) Cell culture methods for testing biocompatibility. Clin Mater 15:173–190

    Article  CAS  Google Scholar 

  • Prashantha K, Rashmi BJ, Venkatesha TV, Lee JH (2006) Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process. Spectrochimica Acta Part A 65:340–344

    Article  CAS  Google Scholar 

  • Prokop A, Kozlov E, Carlesso G, Davidson JM (2002) Hydrogel nanocomposite as a synthetic intro-occular lens capable of accommodation. Adv in Polym Sci 160:119–173

    Article  CAS  Google Scholar 

  • Ratner B, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier, San Diego, CA

    Google Scholar 

  • Sanginario V, Ginebra MP, Tanner KE, Plannel JA, Ambrosio L (2006) Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: morphology and mechanical characterization. J Mater Sci: Mater Med 17:447–454

    Article  CAS  Google Scholar 

  • Santiago F, Mucientes AE, Osorio M, Rivera C (2007) Preparation of composites and nanocomposite based on bentonite and poly(sodium acrylate): effect of amount of bentonite on the swelling behavior. Europ Polym J 42:1–9

    Article  Google Scholar 

  • Saravanan P, Raju MP, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem & Phys 103:278–282

    Article  CAS  Google Scholar 

  • Satarkar, N, Hilt, JZ (2008) Hydrogel nanocomposites as remote controlled biomaterials. Acta Biomaterialia 4:11–16

    Article  CAS  Google Scholar 

  • Schiraldi C, D’Agostino A, Oliva A, Flamma F, De Rosa A, Apicella A, Aversa R, De Rosa M (2004) Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cells adhesion and proliferation. Biomaterials 25:3645–3653

    Article  CAS  Google Scholar 

  • Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51:293–298

    Article  CAS  Google Scholar 

  • Sershen SR, Mensin GA, Ng M, Halas NJ, Beebe DJ, West JL (2005) Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater 17:1366–1368

    Article  CAS  Google Scholar 

  • Shen X, Tong H, Zhu Z, Wan P, Hu J (2007) A novel approach of homogeneous inorganic/organic composites through in situ polymerization in poly-acrylic acid gel. Mater Lett 61:629–634

    Article  CAS  Google Scholar 

  • Shi J, Guo ZX, Luo H, Li Y, Zhu D (2005) Actuator based on MWNT/PVA hydrogels. J Phys Chem B Lett 109:14789–14791

    CAS  Google Scholar 

  • Shin H, Temenoff JS, Mikos AG (2003) In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Biomacromolecules 4:552–560

    Article  CAS  Google Scholar 

  • Sinha A, Das G, Sharma BK, Roy RP, Pramanick AH, Nayar S (2007) Poly(vinyl alcohol)-hydroxyapatite biomimetic scaffold for tissue regeneration. Mater Sci Eng C 27:70–74

    Article  CAS  Google Scholar 

  • Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  CAS  Google Scholar 

  • Sugiyami K, Matsumoto T, Yamazaki Y (2000) Evaluation of biocompatibility of the surface of polyethylene film modified with various water soluble polymers using Ar plasma-post polymerization technique. Macromol Mater Eng 282:5–12

    Article  Google Scholar 

  • Suzuki D, Kawaguchi H (2006) Hybrid microgels with reversible changeable multiple brilliant color. Langmuir 22:3818–3822

    Article  CAS  Google Scholar 

  • Tang Q, Lin J, Wu Z, Wu J, Huang M, Yang Y (2007) Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. Europ Polym J 43:2214–2220

    Article  CAS  Google Scholar 

  • Trojani C, Boukhechba F, Scimeca JC, Vandenbos F, Michiels JF, Daculsi G, Boileau P, Weiss P, Carle GF, Rochet N (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27:3256–3264

    Article  CAS  Google Scholar 

  • Tsay JM, Michalet X (2005) New light on quantum dot cytotoxicity. Chem Biol 12:1159–1161

    Article  CAS  Google Scholar 

  • Tshikhudo TR, Wang Z, Brust M (2004) Biocompatible gold nanoparticles. Mater Sci Tech 20:980–984

    Article  CAS  Google Scholar 

  • Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam), and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064

    Article  CAS  Google Scholar 

  • Wang C, Flynn NT, Langer R (2004) Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites. Adv Mater 16:1074–1079

    Article  CAS  Google Scholar 

  • Weian Z, Wei L, Yue’e F (2005) Synthesis and properties of novel hydrogel nanocomposites. Mater Lett 59:2876–2880

    Article  Google Scholar 

  • Weng H, Zhou J, Tan L, Hu Z (2004) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polymer Edn 15(9):1167–1180

    Article  CAS  Google Scholar 

  • Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube toxicity. Toxic Lett 168:121–131

    Article  CAS  Google Scholar 

  • Williams DH (1986) Definitions in biomaterials: proceedings of a consensus conference of the european society for biomaterials, Chester, England

    Google Scholar 

  • Xiang Y, Peng Z, Chen D (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Europ Polym Journ 42:2125–2132

    Article  CAS  Google Scholar 

  • Xuli PM, Filipcsei G, Zrinyi M (2000) Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels. Macromol 33:1716–1719

    Article  Google Scholar 

  • Yu J, Sundaram S, Weng D, Courtney JM, Moran CR, Graham NB (1991) Blood interactions with novel polyurethaneurea hydrogels. Biomaterials 12:119–120

    Article  CAS  Google Scholar 

  • Zhao H, Argoti SD, Farrel BP, Shipp DA (2003) Polymer-silicate nanocomposites produced by in situ atom transfer radical polymerization. J Polym Sci A: Polym Chem 42:916–924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zach Hilt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meenach, S.A., Anderson, K.W., Hilt, J.Z. (2009). Hydrogel Nanocomposites: Biomedical Applications, Biocompatibility, and Toxicity Analysis. In: Webster, T. (eds) Safety of Nanoparticles. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78608-7_7

Download citation

Publish with us

Policies and ethics