Skip to main content

Helitrons: Their Impact on Maize Genome Evolution and Diversity

  • Chapter
Handbook of Maize

Gene piece movement by the newly-described Helitron family of transposable elements has significantly impacted the evolution of the maize genome. Helitrons have been implicated in causing gene non-colinearity between different maize inbred lines, however capture and movement of functional genes to different regions of the genome by Helitrons remains to be demonstrated. The abundance of these elements and the extent of diversity among them remain largely undetermined. Several hypotheses have been proposed to explain their transposition and mechanism by which these elements prolifically capture and mobilize gene sequences, but each lacks supporting experimental evidence. A more complete understanding of this process requires molecular and genetic evidence of Helitron activity in modern maize genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brunner, S., Fengler, K., Morgante, M., Tingey, S. and Rafalski, A. (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell. 17, 343–360.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, S., Pea. G. and Rafalski, A. (2005) Origins, genetic organization and transcription of a family of non-autonomous Helitron elements in maize. Plant J. 43, 799–810.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.D., Hoshino, A., Park, K.I., Park, I.S. and Iida, S. (2007) Spontaneous mutations caused by a Helitron transposon, Hel-It1, in morning glory, Ipomoea tricolor. Plant J. 49, 924–34.

    Article  PubMed  CAS  Google Scholar 

  • Cultrone, A., Dominguez, Y.R., Drevet, C., Scazzocchio, C. and Fernandez-Martin, R. (2007) The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a Helitron. Mol. Microbiol. 63, 1577–87.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte, C. and Wessler, S.R.(2001) Treasures in the attic: Rolling circle transposons discovered in eukaryotic genomes. Proc. Natl. Acad. Sci. USA. 98, 8923–8924.

    Article  PubMed  CAS  Google Scholar 

  • Fu, H. and Dooner, H.K. (2002) Intraspecific violation of genetic colinearity and its implication in maize. Proc. Natl. Acad. Sci. USA. 99, 9573–9578.

    PubMed  CAS  Google Scholar 

  • Gupta, S., Gallavotti, A., Stryker, GA., Schmidt, R.J. and Lal, S.K. (2005) A novel class of Helitron-related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol. Biol. 57, 115–27.

    Article  PubMed  CAS  Google Scholar 

  • Hall, R.and Callis, C. (1995) Mobile gene cassettes and integrons: capture and spread of genes by site specific recombination. Mol. Micro. 15, 593–600.

    Article  CAS  Google Scholar 

  • Jiang, N., Bao, Z., Zhang, X., Eddy, S.R. and Wessler S.R. (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature. 431:569–73.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov, V.V. and Jurka, J. (2001) Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. USA. 98, 8714–9.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov, V. V. and Jurka, J. (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet. Trends Genet 10, 521–529.

    Google Scholar 

  • Khan, S.A. (2000) Plasmid rolling circle replication: recent development. Mol Microl. 37, 477–484.

    Article  CAS  Google Scholar 

  • Lai, J., Li, Y., Messing, J. and Dooner, H.K. (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc. Natl. Acad. Sci. U S A. 102, 9068–73.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, C.E. and Hannah, L.C. (2003) The maize genome contains a Helitron insertion. Plant Cell. 15, 381–91.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S.K., Choi, J.H., Shaw, J. and Hannah, L.C. (1999) A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol. 121, 411 –418.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S.K. and Hannah, L.C. (2005) Helitrons contribute to the lack of gene colinearity observed in modern maize inbreds. Proc. Natl. Acad. Sci. U S A. 102, 9993–4.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S.K. and Hannah, L.C. (2005) Plant genomes: massive changes of the maize genome are caused by Helitrons. Heredity. 95, 421–2.

    Article  PubMed  CAS  Google Scholar 

  • Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, A. and Rafalski, A. (2005) Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nat. Genet. 37, 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Poulter, R.T., Goodwin, T.J. and Butler, M.I. (2003) Vertebrate helentrons and other novel Helitrons. Gene. 313, 201–12.

    Article  PubMed  CAS  Google Scholar 

  • Pritham, E.J. and Feschotte, C. (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA. 104, 1895–900.

    Article  PubMed  CAS  Google Scholar 

  • Song, R. and Messing, J. (2003) Gene expresiion of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad. Sci. USA. 100, 9055–9060

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli, N., Comanducci, A., Dodd, H.M., Lett, M.C. and Albiger Bennett, P. (2000) IS1294, a DNA element that transposes by RC transposition. Plasmid. 44, 66–84.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. and Dooner, H.K. (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc. Natl. Acad. Sci. U S A. 103, 17644–9.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J.H. and Messing, J. (2006) Maize haplotype with a Helitron-amplified cytidine deaminase gene copy. BMC. Genet. 7, 52.

    Article  PubMed  Google Scholar 

  • Zabala, G. and Vodkin, L.O. (2005) The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. Plant Cell. 17, 2619–32.

    Article  PubMed  CAS  Google Scholar 

  • Zalaba, G. and Vodkin, L.O. (2007) Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC Plant Biol. 7, 38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shailesh K. Lal or Curtis L. Hannah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Lal, S.K., Georgelis, N., Hannah, C.L. (2009). Helitrons: Their Impact on Maize Genome Evolution and Diversity. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_16

Download citation

Publish with us

Policies and ethics