Skip to main content

Reelin/Dab1 Signaling in the Developing Cerebral Cortex

  • Chapter

Abstract

Mice lacking the cytoplasmic adapter protein Dab1 (Disabled homolog-1) display histological defects in the central nervous system (CNS) that are essentially indistinguishable from those observed in the reeler mouse. Dab1 is expressed in virtually all Reelin-responsive cells and is rapidly phosphorylated in response to Reelin application. The finding of a near identity in phenotype, coupled with a direct biochemical response to Reelin, has raised great interest in understanding Dab1 function, both as an exemplar of an adapter protein with a profound phenotypic contribution, and as a means of decoding mechanisms of Reelin signaling. What has emerged from these studies is a surprisingly complex picture of Dab1 at the genomic, mRNA, protein, and functional levels. This chapter will summarize some of the key features of Dab1, and its role as a transducer of the Reelin signal in the developing cerebral cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signal-ing by substrate degradation during brain development. Mol. Cell. Biol. 23:9293-9302.

    Article  PubMed  Google Scholar 

  • Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.

    Article  PubMed  Google Scholar 

  • Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.

    Article  PubMed  Google Scholar 

  • Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.

    Article  PubMed  Google Scholar 

  • Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.

    Article  PubMed  Google Scholar 

  • Bar, I., Tissir, F., Lambert de Rouvroit, C., De Backer, O., and Goffinet, A. M. (2003). The gene encoding disabled-1 (DAB1), the intracellular adaptor of the reelin pathway, reveals unusual complexity in human and mouse. J. Biol. Chem. 278:5802-5812.

    Article  PubMed  Google Scholar 

  • Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.

    Article  PubMed  Google Scholar 

  • Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B. (1994). A region in Shc dis-tinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J. Biol. Chem. 269:32031-32034.

    PubMed  Google Scholar 

  • Bock, H. H., and Herz, J. (2003). Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13:18-26.

    Article  PubMed  Google Scholar 

  • Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.

    Article  PubMed  Google Scholar 

  • Bock, H. H., Jossin, Y., May, P., Bergner, O., and Herz, J. (2004). Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adapter protein disabled-1. J. Biol. Chem. 279:33471-33479.

    Article  PubMed  Google Scholar 

  • Boycott, K. M., Flavelle, S., Bureau, A., Glass, H. C., Fujiwara, T. M., Wirrell, E., Davey, K., Chudley, A. E., Scott, J. N., McLeod, D. R., and Parboosingh, J. S. (2005). Homozygous dele-tion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet. 77:477-483.

    Article  PubMed  Google Scholar 

  • Caviness, V. S., Jr., and Sidman, R. L. (1973). Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148:141-151.

    Article  PubMed  Google Scholar 

  • Chang, B. S., Duzcan, F., Kim, S., Cinbis, M., Aggarwal, A., Apse, K. A., Ozdel, O., Atmaca, M., Zencir, S., Bagci, H., and Walsh, C. A. (2006). The role of RELN in lissencephaly and neu-ropsychiatric disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144:58-63.

    Google Scholar 

  • Chen, K., Ochalski, P. G., Tran, T. S., Sahir, N., Schubert, M., Pramatarova, A., and Howell, B. W. (2004). Interaction between Dab1 and CrkII is promoted by reelin signaling. J. Cell Sci. 117:4527-4536.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G. (2006). Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav. 8:81-90.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.

    Article  PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    Article  PubMed  Google Scholar 

  • Falconer, D. (1951). Two new mutants, “trembler” and “reeler,” with neurological actions in the house mouse. J. Genet. 13:192-201.

    Article  Google Scholar 

  • Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA 99:13178-13183.

    Article  PubMed  Google Scholar 

  • Goldowitz, D., Cushing, R. C., Laywell, E., D’Arcangelo, G., Sheldon, M., Sweet, H. O., Davisson, M., Steindler, D., and Curran, T. (1997). Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J. Neurosci. 17:8767-8777.

    PubMed  Google Scholar 

  • Gonzalez, J. L., Russo, C. J., Goldowitz, D., Sweet, H. O., Davisson, M. T., and Walsh, C. A. (1997). Birthdate and cell marker analysis of scrambler: a novel mutation affecting cortical development with a reeler-like phenotype. J. Neurosci. 17:9204-9211.

    PubMed  Google Scholar 

  • Gonzalez-Billault, C., Del Rio, J. A., Urena, J. M., Jimenez-Mateos, E. M., Barallobre, M. J., Pascual, M., Pujadas, L., Simo, S., Torre, A. L., Gavin, R., Wandosell, F., Soriano, E., and Avila, J. (2005). A role of MAP1B in reelin-dependent neuronal migration. Cereb. Cortex 15:1134-1145.

    Article  PubMed  Google Scholar 

  • Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.

    Article  PubMed  Google Scholar 

  • Hack, I., Bancila, M., Loulier, K., Carroll, P., and Cremer, H. (2002). Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nature Neurosci. 5:939-945.

    Article  PubMed  Google Scholar 

  • Hammond, V., Howell, B., Godinho, L., and Tan, S. S. (2001). Disabled-1 functions cell autonomously during radial migration and cortical layering of pyramidal neurons. J. Neurosci. 21:8798-8808.

    PubMed  Google Scholar 

  • Hartfuss, E., Forster, E., Bock, H. H., Hack, M. A., Leprince, P., Luque, J. M., Herz, J., Frotscher, M., and Gotz, M. (2003). Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130:4597-4609.

    Article  PubMed  Google Scholar 

  • Herrick, T. M., and Cooper, J. A. (2002). A hypomorphic allele of dab1 reveals regional differences in reelin-Dab1 signaling during brain development. Development 129:787-796.

    PubMed  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyro-sine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481-489.

    Article  PubMed  Google Scholar 

  • Hoffarth, R. M., Johnston, J. G., Krushel, L. A., and van der Kooy, D. (1995). The mouse mutation reeler causes increased adhesion within a subpopulation of early postmitotic cortical neurons. J. Neurosci. 15:4838-4850.

    PubMed  Google Scholar 

  • Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Gertler, F. B., and Cooper, J. A. (1997a). Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121-132.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997b). Neuronal position in the devel-oping brain is regulated by mouse disabled-1. Nature 389:733-737.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999a). Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999b). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell. Biol. 19:5179-5188.

    PubMed  Google Scholar 

  • Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877-885.

    Article  PubMed  Google Scholar 

  • Huang, Y., Shah, V., Liu, T., and Keshvara, L. (2005). Signaling through disabled 1 requires phos-phoinositide binding. Biochem. Biophys. Res. Commun. 331:1460-1468.

    Article  PubMed  Google Scholar 

  • Jossin, Y., and Goffinet, A. M.(2001). Reelin does not directly influence axonal growth. J. Neurosci. 21:RC183.

    PubMed  Google Scholar 

  • Jossin, Y., and Goffinet, A. M. (2006). The PI3K/Akt/mTor pathway controls brain development in reelin-dependent and independent manners. Society for Neuroscience Abstract 514.8.

    Google Scholar 

  • Jossin, Y., Ogawa, M., Metin, C., Tissir, F., and Goffinet, A. M. (2003). Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J. Neurosci. 23:9953-9959.

    PubMed  Google Scholar 

  • Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.

    Article  PubMed  Google Scholar 

  • Kavanaugh, W. M., and Williams, L. T. (1994). An alternative to SH2 domains for binding tyro-sine-phosphorylated proteins. Science 266:1862-1865.

    Article  PubMed  Google Scholar 

  • Kavanaugh, W. M., Turck, C.W., and Williams, L. T. (1995). PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268:1177-1179.

    Article  PubMed  Google Scholar 

  • Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.

    Article  PubMed  Google Scholar 

  • Kubo, K., Mikoshiba, K., and Nakajima, K. (2002). Secreted reelin molecules form homodimers. Neurosci. Res. 43:381-388.

    Article  PubMed  Google Scholar 

  • Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.

    Article  PubMed  Google Scholar 

  • Magdaleno, S., Keshvara, L., and Curran, T. (2002). Rescue of ataxia and preplate splitting by ectopic expression of reelin in reeler mice. Neuron 33:573-586.

    Article  PubMed  Google Scholar 

  • Margolis, B. (1999). The PTB domain: The name doesn’t say it all. Trends Endocrinol. Metab. 10:262-267.

    Google Scholar 

  • Meyer, G., Lambert de Rouvroit, C., Goffinet, A. M., and Wahle, P. (2003). Disabled-1 mRNA and protein expression in developing human cortex. Eur. J. Neurosci. 17:517-525.

    Article  PubMed  Google Scholar 

  • Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O., and Pearlman, A. L. (2001). Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci. 4:143-150.

    Article  PubMed  Google Scholar 

  • Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M., and D’Arcangelo, G. (2004). Reelin pro-motes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41:71-84.

    Article  PubMed  Google Scholar 

  • O’Bryan, J. P., Lambert, Q. T., and Der, C. J. (1998). The src homology 2 and phosphotyrosine binding domains of the ShcC adaptor protein function as inhibitors of mitogenic signaling by the epidermal growth factor receptor. J. Biol. Chem. 273:20431-20437.

    Article  PubMed  Google Scholar 

  • Olson, E. C., Kim, S., and Walsh, C. A. (2006). Impaired neuronal positioning and dendritogene-sis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. 26:1767-1775.

    Article  PubMed  Google Scholar 

  • Pawson, T., and Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075-2080.

    Article  PubMed  Google Scholar 

  • Pinto Lord, M. C., Evrard, P., and Caviness, V. S., Jr. (1982). Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain Res. 256:379-393.

    PubMed  Google Scholar 

  • Pramatarova, A., Ochalski, P. G., Chen, K., Gropman, A., Myers, S., Min, K. T., and Howell, B. W. (2003). Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in reelin-stimulated neurons. Mol. Cell. Biol. 23:7210-7221.

    Article  PubMed  Google Scholar 

  • Pramatarova, A., Ochalski, P. G., Lee, C. H., and Howell, B. W. (2006). Mouse disabled 1 regulates the nuclear position of neurons in a Drosophila eye model. Mol. Cell. Biol. 26:1510-1517.

    Article  PubMed  Google Scholar 

  • Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W. B., Caskey, C. T., and Ledbetter, D. H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717-721.

    Article  PubMed  Google Scholar 

  • Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719-3729.

    PubMed  Google Scholar 

  • Sanada, K., Gupta, A., and Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neu-rons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.

    Article  PubMed  Google Scholar 

  • Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A., and Anton, E. S. (2005). Reelin, integrin and Dab1 Interactions during embryonic cerebral cortical development. Cereb. Cortex. 10: 1632-1636.

    Article  Google Scholar 

  • Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.

    Article  PubMed  Google Scholar 

  • Sheppard, A. M., and Pearlman, A. L. (1997). Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378:173-179.

    Article  PubMed  Google Scholar 

  • Songyang, Z., Margolis, B., Chaudhuri, M., Shoelson, S. E., and Cantley, L. C. (1995). The phos-photyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J. Biol. Chem. 270:14863-14866.

    Article  PubMed  Google Scholar 

  • Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693-702.

    Article  PubMed  Google Scholar 

  • Stein, P. L., Lee, H. M., Rich, S., and Soriano, P. (1992). pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70:741-750.

    Article  PubMed  Google Scholar 

  • Stein, P. L., Vogel, H., and Soriano, P. (1994). Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8:1999-2007.

    Article  PubMed  Google Scholar 

  • Stolt, P. C., Jeon, H., Song, H. K., Herz, J., Eck, M. J., and Blacklow, S. C. (2003). Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure (Camb.) 11:569-579.

    Article  Google Scholar 

  • Stolt, P. C., Vardar, D., and Blacklow, S. C. (2004). The dual-function disabled-1 PTB domain exhibits site independence in binding phosphoinositide and peptide ligands. Biochemistry 43:10979-10987.

    Article  PubMed  Google Scholar 

  • Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E. J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell. Biol. 24:1378-1386.

    Article  PubMed  Google Scholar 

  • Suetsugu, S., Tezuka, T., Morimura, T., Hattori, M., Mikoshiba, K., Yamamoto, T., and Takenawa, T. (2004). Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J. 384:1-8.

    Article  PubMed  Google Scholar 

  • Super, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.

    Article  PubMed  Google Scholar 

  • Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1996). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7:798-802.

    Article  PubMed  Google Scholar 

  • Tabata, H., and Nakajima, K. (2002). Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the reelin signal-deficient mice. J. Neurosci. Res. 69:723-730.

    Article  PubMed  Google Scholar 

  • Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., and Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165:709-721.

    Article  PubMed  Google Scholar 

  • Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.

    Article  PubMed  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    Article  PubMed  Google Scholar 

  • Uhlik, M. T., Temple, B., Bencharit, S., Kimple, A. J., Siderovski, D. P., and Johnson, G. L. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains.J. Mol. Biol. 345:1-20.

    Article  Google Scholar 

  • Utsunomiya-Tate, N., Kubo, K., Tate, S., Kainosho, M., Katayama, E., Nakajima, K., and Mikoshiba, K. (2000). Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. USA 97:9729-9734.

    Article  PubMed  Google Scholar 

  • Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.

    Article  PubMed  Google Scholar 

  • Wynshaw-Boris, A., and Gambello, M. J. (2001). LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15:639-651.

    Article  PubMed  Google Scholar 

  • Xu, M., Arnaud, L., and Cooper, J. A. (2005). Both the phosphoinositide and receptor binding activities of Dab1 are required for reelin-stimulated Dab1 tyrosine phosphorylation. Brain Res. Mol. Brain Res. 139:300-305.

    Article  PubMed  Google Scholar 

  • Yip, Y. P., Capriotti, C., Magdaleno, S., Benhayon, D., Curran, T., Nakajima, K., and Yip, J. W. (2004). Components of the reelin signaling pathway are expressed in the spinal cord. J. Comp. Neurol. 470:210-219.

    Article  PubMed  Google Scholar 

  • Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T., and Park, H. W. (2003). Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 278:36572-36581.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Olson, E.C., Walsh, C.A. (2008). Reelin/Dab1 Signaling in the Developing Cerebral Cortex. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_7

Download citation

Publish with us

Policies and ethics