Skip to main content

Apolipoprotein E Receptor 2 and Very-Low-Density Lipoprotein Receptor: An Overview

  • Chapter

It is now well established that members of the low-density lipoprotein (LDL) receptor gene family are crucial regulators of different aspects of neuronal development, synaptic plasticity, maintenance of neuronal homeostasis, and neurodegeneration. This was highlighted in particular by the discovery that the lipoprotein receptors apolipoprotein E receptor-2 (ApoER2) and very-low-density lipoprotein receptor (VLDLR) function as receptors for the neuronal signaling protein Reelin. In this chapter, we will briefly introduce the family of LDL receptor-related proteins and review the functions of its members ApoER2 and VLDLR as Reelin receptors and their role in the developing and adult brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, O. M., and Willnow, T. E. (2006). Lipoprotein receptors in Alzheimer’s disease. Trends Neurosci. 29:687-694.

    PubMed  CAS  Google Scholar 

  • Andersen, O. M., Yeung, C. H., Vorum, H., Wellner, M., Andreassen, T. K., Erdmann, B., Mueller, E. C., Herz, J., Otto, A., Cooper, T. G., and Willnow, T. E. (2003). Essential role of the apolipoprotein E receptor-2 in sperm development. J. Biol. Chem. 278:23989-23995.

    PubMed  CAS  Google Scholar 

  • Andersen, O. M., Reiche, J., Schmidt, V., Gotthardt, M., Spoelgen, R., Behlke, J., von Arnim, C. A., Breiderhoff, T., Jansen, P., Wu, X., Bales, K. R., Cappai, R., Masters, C. L., Gliemann, J., Mufson, E. J., Hyman, B. T., Paul, S. M., Nykjaer, A., and Willnow, T. E. (2005). Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 102:13461-13466.

    PubMed  CAS  Google Scholar 

  • Arnaud, L., Ballif, B. A., and Cooper, J. A. (2003a). Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell. Biol 23:9293-9302.

    PubMed  CAS  Google Scholar 

  • Arnaud, L., Ballif, B. A., Forster, E., and Cooper, J. A. (2003b). Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13:9-17.

    PubMed  CAS  Google Scholar 

  • Assadi, A. H., Zhang, G., Beffert, U., McNeil, R. S., Renfro, A. L., Niu, S., Quattrocchi, C. C., Antalffy, B. A., Sheldon, M., Armstrong, D. D., Wynshaw-Boris, A., Herz, J., D’Arcangelo, G., and Clark, G. D. (2003). Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35:270-276.

    PubMed  CAS  Google Scholar 

  • Bacskai, B. J., Xia, M. Q., Strickland, D. K., Rebeck, G. W., and Hyman, B. T. (2000). The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 97:11551-11556.

    PubMed  CAS  Google Scholar 

  • Ballif, B. A., Arnaud, L., and Cooper, J. A. (2003). Tyrosine phosphorylation of disabled-1 is essential for reelin-stimulated activation of Akt and Src family kinases. Brain Res. Mol. Brain Res. 117:152-159.

    PubMed  CAS  Google Scholar 

  • Ballif, B. A., Arnaud, L., Arthur, W. T., Guris, D., Imamoto, A., and Cooper, J. A. (2004). Activation of a Dab1/CrkL/C3G/Rap1 pathway in reelin-stimulated neurons. Curr. Biol. 14:606-610.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin- mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D., and Herz, J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24:1897-1906.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor apoer2. Neuron 47:567-579.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Nematollah Farsian, F., Masiulis, I., Hammer, R. E., Yoon, S. O., Giehl, K. M., and Herz, J. (2006a). ApoE receptor 2 controls neuronal survival in the adult brain. Curr. Biol. 16:2446-2452.

    PubMed  CAS  Google Scholar 

  • Beffert, U., Durudas, A., Weeber, E. J., Stolt, P. C., Giehl, K. M., Sweatt, J. D., Hammer, R. E., and Herz, J. (2006b). Functional dissection of reelin signaling by site-directed disruption of disabled-1 adaptor binding to apolipoprotein E receptor 2: Distinct roles in development and synaptic plasticity. J. Neurosci. 26:2041-2052.

    PubMed  CAS  Google Scholar 

  • Benhayon, D., Magdaleno, S., and Curran, T. (2003). Binding of purified reelin to ApoER2 and VLDLR mediates tyrosine phosphorylation of disabled-1. Brain Res. Mol. Brain Res. 112:33-45.

    PubMed  CAS  Google Scholar 

  • Bock, H. H., and Herz, J. (2003). Reelin activates Src family tyrosine kinases in neurons. Curr. Biol. 13:18-26.

    PubMed  CAS  Google Scholar 

  • Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.

    PubMed  CAS  Google Scholar 

  • Bock, H. H., Jossin, Y., May, P., Bergner, O., and Herz, J. (2004). Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein disabled-1. J. Biol. Chem. 279:33471-33479.

    PubMed  CAS  Google Scholar 

  • Bonifacino, J. S., and Traub, L. M. (2003). Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72:395-447.

    PubMed  CAS  Google Scholar 

  • Bos, J. L. (2005). Linking Rap to cell adhesion. Curr. Opin. Cell Biol. 17:123-128.

    PubMed  CAS  Google Scholar 

  • Boycott, K. M., Flavelle, S., Bureau, A., Glass, H. C., Fujiwara, T. M., Wirrell, E., Davey, K., Chudley, A. E., Scott, J. N., McLeod, D. R., and Parboosingh, J. S. (2005). Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet. 77:477-483.

    PubMed  CAS  Google Scholar 

  • Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W., and Taylor, J. M. (1985). Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest. 76:1501-1513.

    PubMed  CAS  Google Scholar 

  • Boyles, J. K., Zoellner, C. D., Anderson, L. J., Kosik, L. M., Pitas, R. E., Weisgraber, K. H., Hui, D. Y., Mahley, R. W., Gebicke-Haerter, P. J., Ignatius, M. J., and Shooter, E. M. (1989). A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest. 83:1015-1031.

    PubMed  CAS  Google Scholar 

  • Brandes, C., Novak, S., Stockinger, W., Herz, J., Schneider, W. J., and Nimpf, J. (1997). Avian and murine LR8B and human apolipoprotein E receptor 2: differentially spliced products from corresponding genes. Genomics 42:185-191.

    PubMed  CAS  Google Scholar 

  • Brandes, C., Kahr, L., Stockinger, W., Hiesberger, T., Schneider, W. J., and Nimpf, J. (2001). Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not alpha 2-macroglobulin. J. Biol. Chem. 276:22160-22169.

    PubMed  CAS  Google Scholar 

  • Brich, J., Shie, F. S., Howell, B. W., Li, R., Tus, K., Wakeland, E. K., Jin, L. W., Mumby, M., Churchill, G., Herz, J., and Cooper, J. A. (2003). Genetic modulation of tau phosphorylation in the mouse. J. Neurosci. 23:187-192.

    PubMed  CAS  Google Scholar 

  • Bu, G., and Schwartz, A. L. (1998). RAP, a novel type of ER chaperone. Trends Cell Biol. 8:272-276.

    PubMed  CAS  Google Scholar 

  • Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., McGlade, C. J., Liddington, R. C., and Ginsberg, M. H. (2003). Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA100:2272-2277.

    PubMed  CAS  Google Scholar 

  • Cam, J. A., and Bu, G. (2006). Modulation of beta-amyloid precursor protein trafficking and processing by the low density lipoprotein receptor family. Mol. Neurodegener. 1:8.

    PubMed  Google Scholar 

  • Cao, X., and Sudhof, T. C. (2001). A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293:115-120.

    PubMed  CAS  Google Scholar 

  • Cariboni, A., Rakic, S., Liapi, A., Maggi, R., Goffinet, A., and Parnavelas, J. G. (2005). Reelin provides an inhibitory signal in the migration of gonadotropin-releasing hormone neurons. Development 132:4709-4718.

    PubMed  CAS  Google Scholar 

  • Chen, K., Ochalski, P. G., Tran, T. S., Sahir, N., Schubert, M., Pramatarova, A., and Howell, B. W. (2004). Interaction between Dab1 and CrkII is promoted by reelin signaling. J. Cell Sci. 117:4527-4536.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Beffert, U., Ertunc, M., Tang, T. S., Kavalali, E. T., Bezprozvanny, I., and Herz, J. (2005). Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25:8209-8216.

    PubMed  CAS  Google Scholar 

  • Clatworthy, A. E., Stockinger, W., Christie, R. H., Schneider, W. J., Nimpf, J., Hyman, B. T., and Rebeck, G. W. (1999). Expression and alternate splicing of apolipoprotein E receptor 2 in brain. Neuroscience 90:903-911.

    PubMed  CAS  Google Scholar 

  • Cooper, J. A., and Howell, B. W. (1999). Lipoprotein receptors: signaling functions in the brain? Cell 97:671-674.

    PubMed  CAS  Google Scholar 

  • D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.

    PubMed  Google Scholar 

  • Dhavan, R., and Tsai, L. H. (2001). A decade of CDK5. Nature Rev. Mol. Cell Biol. 2:749-759.

    CAS  Google Scholar 

  • Dietschy, J. M., and Turley, S. D. (2004). Thematic review series: Brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid Res. 45:1375-1397.

    PubMed  CAS  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    PubMed  CAS  Google Scholar 

  • Feng, Y., and Walsh, C. A. (2001). Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nature Rev. Neurosci. 2:408-416.

    CAS  Google Scholar 

  • Forster, E., Tielsch, A., Saum, B., Weiss, K. H., Johanssen, C., Graus-Porta, D., Muller, U., and Frotscher, M. (2002). Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl. Acad. Sci. USA99:13178-13183.

    PubMed  CAS  Google Scholar 

  • Frykman, P. K., Brown, M. S., Yamamoto, T., Goldstein, J. L., and Herz, J. (1995). Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92:8453-8457.

    PubMed  CAS  Google Scholar 

  • Goedert, M., and Spillantini, M. G. (2006). A century of Alzheimer’s disease. Science 314:777-781.

    PubMed  CAS  Google Scholar 

  • Gotthardt, M., Trommsdorff, M., Nevitt, M. F., Shelton, J., Richardson, J. A., Stockinger, W., Nimpf, J., and Herz, J. (2000). Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275:25616-25624.

    PubMed  CAS  Google Scholar 

  • Goudriaan, J. R., Tacken, P. J., Dahlmans, V. E., Gijbels, M. J., van Dijk, K. W., Havekes, L. M., and Jong, M. C. (2001). Protection from obesity in mice lacking the VLDL receptor. Arterioscler. Thromb. Vasc. Biol. 21:1488-1493.

    PubMed  CAS  Google Scholar 

  • Grant, S. G., O’Dell, T. J., Karl, K. A., Stein, P. L., Soriano, P., and Kandel, E. R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258:1903-1910.

    PubMed  CAS  Google Scholar 

  • Heckenlively, J. R., Hawes, N. L., Friedlander, M., Nusinowitz, S., Hurd, R., Davisson, M., and Chang, B. (2003). Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518-522.

    PubMed  Google Scholar 

  • Helbecque, N., and Amouyel, P. (2000). Very low density lipoprotein receptor in Alzheimer disease. Microsc. Res. Tech. 50:273-277.

    PubMed  CAS  Google Scholar 

  • Helbecque, N., Berr, C., Cottel, D., Fromentin-David, I., Sazdovitch, V., Ricolfi, F., Ducimetiere, P., Di Menza, C., and Amouyel, P. (2001). VLDL receptor polymorphism, cognitive impairment, and dementia. Neurology 56:1183-1188.

    PubMed  CAS  Google Scholar 

  • Herz, J. (2006). The switch on the RAPper’s necklace. Mol. Cell 23:451-455.

    PubMed  CAS  Google Scholar 

  • Herz, J., and Beffert, U. (2000). Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nature Rev. Neurosci. 1:51-58.

    CAS  Google Scholar 

  • Herz, J., and Bock, H. H. (2002). Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71:405-434.

    PubMed  CAS  Google Scholar 

  • Herz, J., and Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Rev. Neurosci. 7:850-859.

    CAS  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24: 481-489.

    PubMed  CAS  Google Scholar 

  • Ho, A., and Sudhof, T. C. (2004). Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc. Natl. Acad. Sci. USA 101:2548-2553.

    PubMed  CAS  Google Scholar 

  • Hoe, H. S., and Rebeck, G. W. (2005). Regulation of ApoE receptor proteolysis by ligand binding. Brain Res. Mol. Brain Res. 137:31-39.

    PubMed  CAS  Google Scholar 

  • Hoe, H. S., Wessner, D., Beffert, U., Becker, A. G., Matsuoka, Y., and Rebeck, G. W. (2005). F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol. Cell Biol. 25:9259-9268.

    PubMed  CAS  Google Scholar 

  • Hoe, H. S., Pocivavsek, A., Chakraborty, G., Fu, Z., Vicini, S., Ehlers, M. D., and Rebeck, G. W. (2006a). Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J. Biol. Chem. 281:3425-3431.

    PubMed  CAS  Google Scholar 

  • Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W., and Rebeck, G. W. (2006b). DAB1 and reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J. Biol. Chem. 281:35176-35185.

    PubMed  CAS  Google Scholar 

  • Homayouni, R., Rice, D. S., Sheldon, M., and Curran, T. (1999). Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19:7507-7515.

    PubMed  CAS  Google Scholar 

  • Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26:93-96.

    PubMed  CAS  Google Scholar 

  • Howell, B. W., Gertler, F. B., and Cooper, J. A. (1997a). Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. EMBO J. 16:121-132.

    PubMed  CAS  Google Scholar 

  • Howell, B. W., Hawkes, R., Soriano, P., and Cooper, J. A. (1997b). Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389:733-737.

    PubMed  CAS  Google Scholar 

  • Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999a). Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.

    PubMed  CAS  Google Scholar 

  • Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B., and Cooper, J. A. (1999b). The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glyco-proteins and to phospholipids. Mol. Cell Biol. 19:5179-5188.

    PubMed  CAS  Google Scholar 

  • Howell, B. W., Herrick, T. M., Hildebrand, J. D., Zhang, Y., and Cooper, J. A. (2000). Dab1 tyrosine phosphorylation sites relay positional signals during mouse brain development. Curr. Biol. 10:877-885.

    PubMed  CAS  Google Scholar 

  • Huang, Y., Magdaleno, S., Hopkins, R., Slaughter, C., Curran, T., and Keshvara, L. (2004). Tyrosine phosphorylated disabled 1 recruits Crk family adapter proteins. Biochem. Biophys. Res. Commun. 318:204-212.

    PubMed  CAS  Google Scholar 

  • Huang, Y., Shah, V., Liu, T., and Keshvara, L. (2005). Signaling through disabled 1 requires phosphoinositide binding. Biochem. Biophys. Res. Commun. 331:1460-1468.

    PubMed  CAS  Google Scholar 

  • Ignatius, M. J., Shooter, E. M., Pitas, R. E., and Mahley, R. W. (1987). Lipoprotein uptake by neuronal growth cones in vitro. Science 236:959-962.

    PubMed  CAS  Google Scholar 

  • Jossin, Y., Ogawa, M., Metin, C., Tissir, F., and Goffinet, A. M. (2003). Inhibition of SRC family kinases and non-classical protein kinases C induce a reeler-like malformation of cortical plate development. J. Neurosci. 23:9953-9959.

    PubMed  CAS  Google Scholar 

  • Jossin, Y., Ignatova, N., Hiesberger, T., Herz, J., Lambert de Rouvroit, C., and Goffinet, A. M. (2004). The central fragment of reelin, generated by proteolytic processing in vivo, is critical to its function during cortical plate development. J. Neurosci. 24:514-521.

    PubMed  CAS  Google Scholar 

  • Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of reelin-induced sites of tyrosyl phosphorylation on disabled 1. J. Biol. Chem. 276:16008-16014.

    PubMed  CAS  Google Scholar 

  • Kinoshita, A., Shah, T., Tangredi, M. M., Strickland, D. K., and Hyman, B. T. (2003). The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J. Biol. Chem. 278:41182-41188.

    PubMed  CAS  Google Scholar 

  • Koch, S., Strasser, V., Hauser, C., Fasching, D., Brandes, C., Bajari, T. M., Schneider, W. J., and Nimpf, J. (2002). A secreted soluble form of ApoE receptor 2 acts as a dominant-negative receptor and inhibits reelin signaling. EMBO J. 21:5996-6004.

    PubMed  CAS  Google Scholar 

  • Kuo, G., Arnaud, L., Kronstad-O’Brien, P., and Cooper, J. A. (2005). Absence of Fyn and Src causes a reeler-like phenotype. J. Neurosci. 25:8578-8586.

    PubMed  CAS  Google Scholar 

  • Ma, S. L., Ng, H. K., Baum, L., Pang, J. C., Chiu, H. F., Woo, J., Tang, N. L., and Lam, L. C. (2002). Low-density lipoprotein receptor-related protein 8 (apolipoprotein E receptor 2) gene polymorphisms in Alzheimer’s disease. Neurosci. Lett. 332:216-218.

    PubMed  CAS  Google Scholar 

  • Mahley, R. W. (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622-630.

    PubMed  CAS  Google Scholar 

  • Mahley, R. W., and Rall, S. C., Jr. (2000). Apolipoprotein E: far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 1:507-537.

    PubMed  CAS  Google Scholar 

  • Mahley, R. W., Innerarity, T. L., Rall, S. C., Jr., and Weisgraber, K. H. (1984). Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25:1277-1294.

    PubMed  CAS  Google Scholar 

  • Mahley, R. W., Weisgraber, K. H., and Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 103:5644-5651.

    PubMed  CAS  Google Scholar 

  • Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., and Pfrieger, F. W. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354-1357.

    PubMed  CAS  Google Scholar 

  • May, P., and Herz, J. (2003). LDL receptor-related proteins in neurodevelopment. Traffic 4:291-301.

    PubMed  CAS  Google Scholar 

  • May, P., Reddy, Y. K., and Herz, J. (2002). Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J. Biol. Chem. 277:18736-18743.

    PubMed  CAS  Google Scholar 

  • May, P., Bock, H. H., Nimpf, J., and Herz, J. (2003). Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J. Biol. Chem. 278:37386-37392.

    PubMed  CAS  Google Scholar 

  • May, P., Rohlmann, A., Bock, H. H., Zurhove, K., Marth, J. D., Schomburg, E. D., Noebels, J. L., Beffert, U., Sweatt, J. D., Weeber, E. J., and Herz, J. (2004). Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell Biol. 24:8872-8883.

    PubMed  CAS  Google Scholar 

  • May, P., Herz, J., and Bock, H. H. (2005). Molecular mechanisms of lipoprotein receptor signalling. Cell. Mol. Life Sci. 62:2325-2338.

    PubMed  CAS  Google Scholar 

  • Mayer, H., Duit, S., Hauser, C., Schneider, W. J., and Nimpf, J. (2006). Reconstitution of the reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol. Cell Biol. 26:19-27.

    PubMed  CAS  Google Scholar 

  • Merdes, G., Soba, P., Loewer, A., Bilic, M. V., Beyreuther, K., and Paro, R. (2004). Interference of human and Drosophila APP and APP-like proteins with PNS development in Drosophila. EMBO J. 23:4082-4095.

    PubMed  CAS  Google Scholar 

  • Morimura, T., Hattori, M., Ogawa, M., and Mikoshiba, K. (2005). Disabled1 regulates the intracellular trafficking of reelin receptors. J. Biol. Chem. 280:16901-16908.

    PubMed  CAS  Google Scholar 

  • Niethammer, M., Smith, D. S., Ayala, R., Peng, J., Ko, J., Lee, M. S., Morabito, M., and Tsai, L. H. (2000). NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28:697-711.

    PubMed  CAS  Google Scholar 

  • Nykjaer, A., and Willnow, T. E. (2002). The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol. 12:273-280.

    PubMed  CAS  Google Scholar 

  • Ohshima, T., Ogawa, M., Veeranna, Hirasawa, M., Longenecker, G., Ishiguro, K., Pant, H. C., Brady, R. O., Kulkarni, A. B., and Mikoshiba, K. (2001). Synergistic contributions of cyclin-dependent kinase 5/p35 and reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl. Acad. Sci. USA 98:2764-2769.

    PubMed  CAS  Google Scholar 

  • Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., and Mikoshiba, K. (2007). Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140:84-95.

    PubMed  CAS  Google Scholar 

  • Okuizumi, K., Onodera, O., Namba, Y., Ikeda, K., Yamamoto, T., Seki, K., Ueki, A., Nanko, S., Tanaka, H., Takahashi, H., Oyanagi, K., Mizusawa, H., Kanazawa, I., and Tsuji, S. (1995). Genetic association of the very low density lipoprotein (VLDL) receptor gene with sporadic Alzheimer’s disease. Nature Genet. 11:207-209.

    PubMed  CAS  Google Scholar 

  • Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D., and Weisgraber, K. H. (1987). Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 262:14352-14360.

    PubMed  CAS  Google Scholar 

  • Pramatarova, A., Ochalski, P. G., Chen, K., Gropman, A., Myers, S., Min, K. T., and Howell, B. W. (2003). Nck beta interacts with tyrosine-phosphorylated disabled 1 and redistributes in reelin-stimulated neurons. Mol. Cell Biol. 23:7210-7221.

    PubMed  CAS  Google Scholar 

  • Pramatarova, A., Ochalski, P. G., Lee, C. H., and Howell, B. W. (2006). Mouse disabled 1 regulates the nuclear position of neurons in a Drosophila eye model. Mol. Cell Biol. 26:1510-1517.

    PubMed  CAS  Google Scholar 

  • Qiu, S., Zhao, L. F., Korwek, K. M., and Weeber, E. J. (2006). Differential reelin-induced enhancement of NMDA and AMPA receptor activity in the adult hippocampus. J. Neurosci. 26:12943-12955.

    PubMed  CAS  Google Scholar 

  • Rice, D. S., Sheldon, M., D’Arcangelo, G., Nakajima, K., Goldowitz, D., and Curran, T. (1998). Disabled-1 acts downstream of reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719-3729.

    PubMed  CAS  Google Scholar 

  • Roses, A. D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 47:387-400.

    PubMed  CAS  Google Scholar 

  • Rossel, M., Loulier, K., Feuillet, C., Alonso, S., and Carroll, P. (2005). Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Development 132:1175-1185.

    PubMed  CAS  Google Scholar 

  • Sanada, K., Gupta, A., and Tsai, L. H. (2004). Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neuronal positioning during early corticogenesis. Neuron 42:197-211.

    PubMed  CAS  Google Scholar 

  • Sasaki, S., Shionoya, A., Ishida, M., Gambello, M.J., Yingling, J., Wynshaw-Boris, A., and Hirotsune, S. (2000). A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28:681-696.

    PubMed  CAS  Google Scholar 

  • Sato, N., Fukushima, N., Chang, R., Matsubayashi, H., and Goggins, M. (2006). Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548-565.

    PubMed  CAS  Google Scholar 

  • Schneider, W. J., and Nimpf, J. (2003). LDL receptor relatives at the crossroad of endocytosis and signaling. Cell. Mol. Life Sci. 60:892-903.

    PubMed  CAS  Google Scholar 

  • Schneider, W. J., Nimpf, J., and Bujo, H. (1997). Novel members of the low density lipoprotein receptor superfamily and their potential roles in lipid metabolism. Curr. Opin. Lipidol. 8:315-319.

    PubMed  CAS  Google Scholar 

  • Sheldon, M., Rice, D. S., D’Arcangelo, G., Yoneshima, H., Nakajima, K., Mikoshiba, K., Howell, B. W., Cooper, J. A., Goldowitz, D., and Curran, T. (1997). Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730-733.

    PubMed  CAS  Google Scholar 

  • Sinha, S., and Lieberburg, I. (1999). Cellular mechanisms of beta-amyloid production and secretion. Proc. Natl. Acad. Sci. USA 96:11049-11053.

    PubMed  CAS  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., Nairn, A. C., Salter, M. W., Lombroso, P. J., Gouras, G. K., and Greengard, P. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neurosci. 8:1051-1058.

    PubMed  CAS  Google Scholar 

  • Stockinger, W., Brandes, C., Fasching, D., Hermann, M., Gotthardt, M., Herz, J., Schneider, W. J., and Nimpf, J. (2000). The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and -2. J. Biol. Chem. 275:25625-25632.

    PubMed  CAS  Google Scholar 

  • Stolt, P. C., and Bock, H. H. (2006). Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal 18:1560-1571.

    PubMed  CAS  Google Scholar 

  • Stolt, P. C., Jeon, H., Song, H. K., Herz, J., Eck, M. J., and Blacklow, S. C. (2003). Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure (Cambridge) 11:569-579.

    CAS  Google Scholar 

  • Stolt, P. C., Vardar, D., and Blacklow, S. C. (2004). The dual-function disabled-1 PTB domain exhibits site independence in binding phosphoinositide and peptide ligands. Biochemistry 43:10979-10987.

    PubMed  CAS  Google Scholar 

  • Stolt, P. C., Chen, Y., Liu, P., Bock, H. H., Blacklow, S. C., and Herz, J. (2005). Phosphoinositide binding by the disabled-1 PTB domain is necessary for membrane localization and reelin signal transduction. J. Biol. Chem. 280:9671-9677.

    PubMed  CAS  Google Scholar 

  • Strasser, V., Fasching, D., Hauser, C., Mayer, H., Bock, H. H., Hiesberger, T., Herz, J., Weeber, E. J., Sweatt, J. D., Pramatarova, A., Howell, B., Schneider, W. J., and Nimpf, J. (2004). Receptor clustering is involved in reelin signaling. Mol. Cell Biol. 24:1378-1386.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., and Bova Hill, C. (2002). Molecular biology of apolipoprotein E. Curr. Opin. Lipidol. 13:119-123.

    PubMed  CAS  Google Scholar 

  • Tacken, P. J., Teusink, B., Jong, M. C., Harats, D., Havekes, L. M., van Dijk, K. W., and Hofker, M. H. (2000). LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J. Lipid Res. 41:2055-2062.

    PubMed  CAS  Google Scholar 

  • Takada, H., Imoto, I., Tsuda, H., Nakanishi, Y., Sakakura, C., Mitsufuji, S., Hirohashi, S., and Inazawa, J. (2006). Genomic loss and epigenetic silencing of very-low-density lipoprotein receptor involved in gastric carcinogenesis. Oncogene 25:6554-6562.

    PubMed  CAS  Google Scholar 

  • Takahashi, S., Sakai, J., Fujino, T., Hattori, H., Zenimaru, Y., Suzuki, J., Miyamori, I., and Yamamoto, T. T. (2004). The very low-density lipoprotein (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J. Atheroscler. Thromb. 11:200-208.

    PubMed  CAS  Google Scholar 

  • Taru, H., Iijima, K., Hase, M., Kirino, Y., Yagi, Y., and Suzuki, T. (2002). Interaction of Alzheimer’s beta-amyloid precursor family proteins with scaffold proteins of the JNK signaling cascade. J. Biol. Chem. 277:20070-20078.

    PubMed  CAS  Google Scholar 

  • Trommsdorff, M., Borg, J. P., Margolis, B., and Herz, J. (1998). Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273:33556-33560.

    PubMed  CAS  Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689-701.

    PubMed  CAS  Google Scholar 

  • Tsai, L. H., and Gleeson, J. G.(2005). Nucleokinesis in neuronal migration. Neuron 46:383-388.

    PubMed  CAS  Google Scholar 

  • Verhey, K. J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B. J., Rapoport, T. A., and Margolis, B. (2001). Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152:959-970.

    PubMed  CAS  Google Scholar 

  • Wang, L., Wang, X., Laird, N., Zuckerman, B., Stubblefield, P., and Xu, X. (2006). Polymorphism in maternal LRP8 gene is associated with fetal growth. Am. J. Hum. Genet. 78:770-777.

    PubMed  CAS  Google Scholar 

  • Ware, M. L., Fox, J. W., Gonzalez, J. L., Davis, N. M., Lambert de Rouvroit, C., Russo, C. J., Chua, S. C., Jr., Goffinet, A. M., and Walsh, C. A. (1997). Aberrant splicing of a mouse disabled homolog, mdab1, in the scrambler mouse. Neuron 19:239-249.

    PubMed  CAS  Google Scholar 

  • Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.

    PubMed  CAS  Google Scholar 

  • Willnow, T. E., Nykjaer, A., and Herz, J. (1999). Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol. 1:E157-162.

    PubMed  CAS  Google Scholar 

  • Wolfe, M. S. (2006). The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931-7939.

    PubMed  CAS  Google Scholar 

  • Xu, M., Arnaud, L., and Cooper, J. A. (2005). Both the phosphoinositide and receptor binding activities of Dab1 are required for reelin-stimulated Dab1 tyrosine phosphorylation. Brain Res. Mol. Brain Res. 139:300-305.

    PubMed  CAS  Google Scholar 

  • Yagi, T., Aizawa, S., Tokunaga, T., Shigetani, Y., Takeda, N., and Ikawa, Y. (1993). A role for Fyn tyrosine kinase in the suckling behaviour of neonatal mice. Nature 366:742-745.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., and Bujo, H. (1996). Close encounters with apolipoprotein E receptors. Curr. Opin. Lipidol. 7:298-302.

    PubMed  CAS  Google Scholar 

  • Yasuda, J., Whitmarsh, A. J., Cavanagh, J., Sharma, M., and Davis, R. J. (1999). The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell Biol. 19:7245-7254.

    PubMed  CAS  Google Scholar 

  • Yuasa, S., Hattori, K., and Yagi, T. (2004). Defective neocortical development in Fyntyrosine-kinase-deficient mice. Neuroreport 15:819-822.

    PubMed  CAS  Google Scholar 

  • Yun, M., Keshvara, L., Park, C. G., Zhang, Y. M., Dickerson, J. B., Zheng, J., Rock, C. O., Curran, T., and Park, H. W. (2003). Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 278:36572-36581.

    PubMed  CAS  Google Scholar 

  • Zhuo, M., Holtzman, D. M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M., and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20:542-549.

    PubMed  CAS  Google Scholar 

  • Zou, Z., Chung, B., Nguyen, T., Mentone, S., Thomson, B., and Biemesderfer, D. (2004). Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J. Biol. Chem. 279:34302-34310.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Bock, H.H., Herz, J. (2008). Apolipoprotein E Receptor 2 and Very-Low-Density Lipoprotein Receptor: An Overview. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_2

Download citation

Publish with us

Policies and ethics