Skip to main content

A Tale of Two Genes: Reelin and BDNF

  • Chapter
Book cover Reelin Glycoprotein
  • 698 Accesses

BDNF is a survival factor for the Cajal-Retzius cells in the marginal zone, which are an important source of Reelin in the neocortex. BDNF is also a negative regulator of Reelin expression in both Cajal-Retzius cells and GABAergic cells in the cortical plate. BDNF and Reelin act in parallel to regulate many processes during neural development and maintenance, including cell migration and neural plasticity. Frequently, BDNF and Reelin have opposite influences on the processes they regulate, suggesting that BDNF-induced downregulation of Reelin is involved. Reelin is an important regulator of neural migration during neocortex formation. BDNF seems to influence this process both directly and indirectly via regulation of Reelin expression. Moreover, epileptic seizures increase BDNF levels while decreasing Reelin levels, and BDNF and Reelin seem to have opposite roles in mediating the effects of the seizures. Mental disorders, in particular schizophrenia, involve alterations in BDNF and Reelin expression. Again, the changes are mainly opposite, and a negative regulation of Reelin by BDNF has been suggested. In contrast, hippocampal LTP is promoted by both Reelin and BDNF signaling. Finally, there is overlap in the epigenetic regulation and signaling pathways of BDNF and Reelin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdolmaleky, H. M., Thiagalingam, S., and Wilcox, M. (2005). Genetics and epigenetics in major psychiatric disorders: dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics 5:149-160.

    Article  PubMed  Google Scholar 

  • Akaneya, Y., Tsumoto, T., Kinoshita, S., and Hatanaka, H. (1997). Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J. Neurosci. 17:6707-6716.

    PubMed  Google Scholar 

  • Alcantara, S., Pozas, E., Ibanez, C. F., and Soriano, E. (2006). BDNF-modulated spatial organiza-tion of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the develop-ment of cortical organization. Cereb. Cortex 16:487-499.

    Article  PubMed  Google Scholar 

  • Andrews, W., Liapi, A., Plachez, C., Camurri, L., Zhang, J., Mori, S., Murakami, F., Parnavelas, J. G., Sundaresan, V., and Richards, L. J. (2006). Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. Development 133:2243-2252.

    Article  PubMed  Google Scholar 

  • Ang, E. S., Jr., Haydar, T. F., Gluncic, V., and Rakic, P. (2003). Four-dimensional migratory coordi-nates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23:5805-5815.

    PubMed  Google Scholar 

  • Barde, Y. A., Edgar, D., and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1:549-553.

    PubMed  Google Scholar 

  • Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., and Herz, J. (2002). Reelin-medi-ated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J. Biol. Chem. 277:49958-49964.

    Article  PubMed  Google Scholar 

  • Beffert, U., Weeber, E. J., Morfini, G., Ko, J., Brady, S. T., Tsai, L. H., Sweatt, J. D., and Herz, J. (2004). Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24:1897-1906.

    Article  PubMed  Google Scholar 

  • Beffert, U., Weeber, E. J., Durudas, A., Qiu, S., Masiulis, I., Sweatt, J. D., Li, W. P., Adelmann, G., Frotscher, M., Hammer, R. E., and Herz, J. (2005). Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567-579.

    Article  PubMed  Google Scholar 

  • Behar, T. N., Dugich-Djordjevic, M. M., Li, Y. X., Ma, W., Somogyi, R., Wen, X., Brown, E., Scott, C., McKay, R. D., and Barker, J. L. (1997). Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur. J. Neurosci. 9:2561-2570.

    Article  PubMed  Google Scholar 

  • Bibel, M., and Barde, Y. A. (2000). Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14:2919-2937.

    Article  PubMed  Google Scholar 

  • Bock, H. H., Jossin, Y., Liu, P., Forster, E., May, P., Goffinet, A. M., and Herz, J. (2003). Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278:38772-38779.

    Article  PubMed  Google Scholar 

  • Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A., and Pearlman, A. L. (1997). Neuronal het-erotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18:505-517.

    Article  PubMed  Google Scholar 

  • Bu, G., and Schwartz, A. L. (1998). RAP, a novel type of ER chaperone. Trends Cell Biol. 8:272-276.

    Article  PubMed  Google Scholar 

  • Cabelli, R. J., Hohn, A., and Shatz, C. J. (1995). Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267:1662-1666.

    Article  PubMed  Google Scholar 

  • Cabelli, R. J., Shelton, D. L., Segal, R. A., and Shatz, C. J. (1997). Blockade of endogenous lig-ands of trkB inhibits formation of ocular dominance columns. Neuron 19:63-76.

    Article  PubMed  Google Scholar 

  • Cohen, S., and Levi-Montalcini, R. (1957). Purification and properties of a nerve growth-promot-ing factor isolated from mouse sarcoma 180. Cancer Res. 17:15-20.

    PubMed  Google Scholar 

  • D’Arcangelo, G., Miao, G. G., Chen, S. C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719-723.

    Article  PubMed  Google Scholar 

  • D’Arcangelo, G., Homayouni, R., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471-479.

    Article  PubMed  Google Scholar 

  • Del Rio, J. A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70-74.

    Article  PubMed  Google Scholar 

  • Derer, P. (1985). Comparative localization of Cajal-Retzius cells in the neocortex of normal and reeler mutant mice fetuses. Neurosci. Lett. 54:1-6.

    Article  PubMed  Google Scholar 

  • Dong, E., Caruncho, H., Liu, W. S., Smalheiser, N. R., Grayson, D. R., Costa, E., and Guidotti, A. (2003). A reelin-integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc. Natl. Acad. Sci. USA 100:5479-5484.

    Article  PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M. G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33-44.

    Article  PubMed  Google Scholar 

  • Durany, N., Michel, T., Zochling, R., Boissl, K. W., Cruz-Sanchez, F. F., Riederer, P., and Thome, J. (2001). Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psy-choses. Schizophr. Res. 52:79-86.

    Article  PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., and Weinberger, D. R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257-269.

    Article  PubMed  Google Scholar 

  • Ernfors, P., Bengzon, J., Kokaia, Z., Persson, H., and Lindvall, O. (1991). Increased levels of messenger RNAs for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165-176.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654-663.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Kroll, J. L., and Stary, J. M. (2001). Altered levels of reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12:3209-3215.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Stary, J. M., Earle, J. A., Araghi-Niknam, M., and Eagan, E. (2005a). GABAergic dys-function in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and reelin proteins in cerebellum. Schizophr. Res. 72:109-122.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T. J., Lee, S., Brooks, A. I., and Pearce, D. A. (2005b). Reelin signaling is impaired in autism. Biol. Psychiatry 57:777-787.

    Article  PubMed  Google Scholar 

  • Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., and Lu, B. (1996). Regulation of synap-tic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706-709.

    Article  PubMed  Google Scholar 

  • Friedman, W. J., Olson, L., and Persson, H. (1991). Cells that express brain-derived neurotrophic factor mRNA in the developing postnatal rat brain. Eur. J. Neurosci. 3:688-697.

    Article  PubMed  Google Scholar 

  • Frotscher, M., Haas, C. A., and Forster, E. (2003). Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13:634-640.

    Article  PubMed  Google Scholar 

  • Gianfranceschi, L., Siciliano, R., Walls, J., Morales, B., Kirkwood, A., Huang, Z. J., Tonegawa, S., and Maffei, L. (2003). Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc. Natl. Acad. Sci. USA 100:12486-12491.

    Article  PubMed  Google Scholar 

  • Graus-Porta, D., Blaess, S., Senften, M., Littlewood-Evans, A., Damsky, C., Huang, Z., Orban, P., Klein, R., Schittny, J. C., and Muller, U. (2001). Beta1-class integrins regulate the develop-ment of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367-379.

    Article  PubMed  Google Scholar 

  • Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov, D., and Costa, E. (2000). Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57:1061-1069.

    Article  PubMed  Google Scholar 

  • Guilhem, D., Dreyfus, P. A., Makiura, Y., Suzuki, F., and Onteniente, B. (1996). Short increase of BDNF messenger RNA triggers kainic acid-induced neuronal hypertrophy in adult mice. Neuroscience 72:923-931.

    Article  PubMed  Google Scholar 

  • Haas, C. A., Deller, T., Krsnik, Z., Tielsch, A., Woods, A., and Frotscher, M. (2000). Entorhinal cortex lesion does not alter reelin messenger RNA expression in the dentate gyrus of young and adult rats. Neuroscience 97:25-31.

    Article  PubMed  Google Scholar 

  • Hallbook, F., Ibanez, C. F., and Persson, H. (1991). Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6:845-858.

    Article  PubMed  Google Scholar 

  • Hashimoto, K., Iwata, Y., Nakamura, K., Tsujii, M., Tsuchiya, K. J., Sekine, Y., Suzuki, K., Minabe, Y., Takei, N., Iyo, M., and Mori, N. (2006). Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog. Neuropsychopharmacol. Biol. Psychiatry 30:1529-1531.

    Article  PubMed  Google Scholar 

  • He, X. P., Kotloski, R., Nef, S., Luikart, B. W., Parada, L. F., and McNamara, J. O. (2004). Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 43:31-42.

    Article  PubMed  Google Scholar 

  • Heinrich, C., Nitta, N., Flubacher, A., Muller, M., Fahrner, A., Kirsch, M., Freiman, T., Suzuki, F., Depaulis, A., Frotscher, M., and Haas, C. A. (2006). Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J. Neurosci. 26:4701-4713.

    Article  PubMed  Google Scholar 

  • Hohn, A., Leibrock, J., Bailey, K., and Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339-341.

    Article  PubMed  Google Scholar 

  • Houser, C. R. (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 535:195-204.

    Article  PubMed  Google Scholar 

  • Howell, B. W., Herrick, T. M., and Cooper, J. A. (1999). Reelin-induced tyrosine [corrected] phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13:643-648.

    Article  PubMed  Google Scholar 

  • Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L., and Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739-755.

    Article  PubMed  Google Scholar 

  • Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smalheiser, N. R., Davis, J. M., Pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., and Costa, E. (1998). A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. USA 95:15718-15723.

    Article  PubMed  Google Scholar 

  • Iritani, S., Niizato, K., Nawa, H., Ikeda, K., and Emson, P. C. (2003). Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog. Neuropsychopharmacol. Biol. Psychiatry 27:801-807.

    Article  PubMed  Google Scholar 

  • Isackson, P. J., Huntsman, M. M., Murray, K. D., and Gall, C. M. (1991). BDNF mRNA expres-sion is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6:937-948.

    Article  PubMed  Google Scholar 

  • Jiang, B., Akaneya, Y., Ohshima, M., Ichisaka, S., Hata, Y., and Tsumoto, T. (2001). Brain-derived neurotrophic factor induces long-lasting potentiation of synaptic transmission in visual cortex in vivo in young rats, but not in the adult. Eur. J. Neurosci. 14:1219-1228.

    Article  PubMed  Google Scholar 

  • Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., and Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 109:143-148.

    Article  PubMed  Google Scholar 

  • Keshvara, L., Magdaleno, S., Benhayon, D., and Curran, T. (2002). Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of reelin signaling. J. Neurosci. 22:4869-4877.

    PubMed  Google Scholar 

  • Knable, M. B., Barci, B. M., Webster, M. J., Meador-Woodruff, J., and Torrey, E. F. (2004). Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem find-ings from the Stanley Neuropathology Consortium. Mol. Psychiatry 9:609-620.

    Article  PubMed  Google Scholar 

  • Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., and Bonhoeffer, T. (1995). Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92:8856-8860.

    Article  PubMed  Google Scholar 

  • Kovalchuk, Y., Hanse, E., Kafitz, K. W., and Konnerth, A. (2002). Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295:1729-1734.

    Article  PubMed  Google Scholar 

  • Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., Malone, L. M., and Sweatt, J. D. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281:15763-15773.

    Article  PubMed  Google Scholar 

  • Levine, E. S., Crozier, R. A., Black, I. B., and Plummer, M. R. (1998). Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl. Acad. Sci. USA 95:10235-10239.

    Article  PubMed  Google Scholar 

  • Magdaleno, S. M., and Curran, T. (2001). Brain development: integrins and the reelin pathway. Curr. Biol. 11:R1032-1035.

    Article  PubMed  Google Scholar 

  • Marty, S., Carroll, P., Cellerino, A., Castren, E., Staiger, V., Thoenen, H., and Lindholm, D. (1996). Brain-derived neurotrophic factor promotes the differentiation of various hippocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J. Neurosci. 16:675-687.

    PubMed  Google Scholar 

  • Meyer, G., Goffinet, A. M., and Fairen, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb. Cortex 9:765-775.

    Article  PubMed  Google Scholar 

  • Minichiello, L., Casagranda, F., Tatche, R. S., Stucky, C. L., Postigo, A., Lewin, G. R., Davies, A. M., and Klein, R. (1998). Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron 21:335-345.

    Article  PubMed  Google Scholar 

  • Miyazaki, K., Narita, N., Sakuta, R., Miyahara, T., Naruse, H., Okado, N., and Narita, M. (2004). Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev. 26:292-295.

    Article  PubMed  Google Scholar 

  • Murray, K. D., Isackson, P. J., Eskin, T. A., King, M. A., Montesinos, S. P., Abraham, L. A., and Roper, S. N. (2000). Altered mRNA expression for brain-derived neurotrophic factor and type II calcium/calmodulin-dependent protein kinase in the hippocampus of patients with intracta-ble temporal lobe epilepsy. J. Comp. Neurol. 418:411-422.

    Article  PubMed  Google Scholar 

  • Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F., and Kennedy, J. L. (2002). The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71:651-655.

    Article  PubMed  Google Scholar 

  • Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899-912.

    Article  PubMed  Google Scholar 

  • Ohmiya, M., Shudai, T., Nitta, A., Nomoto, H., Furukawa, Y., and Furukawa, S. (2002). Brain-derived neurotrophic factor alters cell migration of particular progenitors in the developing mouse cerebral cortex. Neurosci. Lett. 317:21-24.

    Article  PubMed  Google Scholar 

  • Ohshima, T., and Mikoshiba, K. (2002). Reelin signaling and Cdk5 in the control of neuronal positioning. Mol. Neurobiol. 26:153-166.

    Article  PubMed  Google Scholar 

  • Ohshima, T., Suzuki, H., Morimura, T., Ogawa, M., and Mikoshiba, K. (2007). Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140:84-95.

    Article  PubMed  Google Scholar 

  • Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., Folly, E., Iversen, P. E., Bauman, M. L., Perry, R. H., and Wenk, G. L. (2001). Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am. J. Psychiatry 158:1058-1066.

    Article  PubMed  Google Scholar 

  • Persico, A. M., D’Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6:150-159.

    Article  PubMed  Google Scholar 

  • Pla, R., Borrell, V., Flames, N., and Marin, O. (2006). Layer acquisition by cortical GABAergic interneurons is independent of reelin signaling. J. Neurosci. 26:6924-6934.

    Article  PubMed  Google Scholar 

  • Polleux, F., Whitford, K. L., Dijkhuizen, P. A., Vitalis, T., and Ghosh, A. (2002). Control of corti-cal interneuron migration by neurotrophins and PI3-kinase signaling. Development 129:3147-3160.

    PubMed  Google Scholar 

  • Rakic, P., and Caviness, V. S., Jr. (1995). Cortical development: view from neurological mutants two decades later. Neuron 14:1101-1104.

    Article  PubMed  Google Scholar 

  • Riedel, A., Miettinen, R., Stieler, J., Mikkonen, M., Alafuzoff, I., Soininen, H., and Arendt, T. (2003). Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer’s disease. Acta Neuropathol. (Berl.) 106:291-302.

    Article  Google Scholar 

  • Ringstedt, T., Linnarsson, S., Wagner, J., Lendahl, U., Kokaia, Z., Arenas, E., Ernfors, P., and Ibanez, C. F. (1998). BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21:305-315.

    Article  PubMed  Google Scholar 

  • Scharfman, H. E., Goodman, J. H., Sollas, A. L., and Croll, S. D. (2002). Spontaneous limbic sei-zures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp. Neurol. 174:201-214.

    Article  PubMed  Google Scholar 

  • Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Weder, A. B., and Burmeister, M. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28:397-401.

    Article  PubMed  Google Scholar 

  • Serajee, F. J., Zhong, H., and Mahbubul Huq, A. H. (2006). Association of reelin gene polymor-phisms with autism. Genomics 87:75-83.

    Article  PubMed  Google Scholar 

  • Siuciak, J. A., Lewis, D. R., Wiegand, S. J., and Lindsay, R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56:131-137.

    Article  PubMed  Google Scholar 

  • Sklar, P., Gabriel, S. B., McInnis, M. G., Bennett, P., Lim, Y. M., Tsan, G., Schaffner, S., Kirov, G., Jones, I., Owen, M., Craddock, N., DePaulo, J. R., and Lander, E. S. (2002). Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 7:579-593.

    Article  PubMed  Google Scholar 

  • Suen, P. C., Wu, K., Levine, E. S., Mount, H. T., Xu, J. L., Lin, S. Y., and Black, I. B. (1997). Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1. Proc. Natl. Acad. Sci. USA 94:8191-8195.

    Article  PubMed  Google Scholar 

  • Super, H., Del Rio, J. A., Martinez, A., Perez-Sust, P., and Soriano, E. (2000). Disruption of neu-ronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602-613.

    Article  PubMed  Google Scholar 

  • Szekeres, G., Juhasz, A., Rimanoczy, A., Keri, S., and Janka, Z. (2003). The C270T polymor-phism of the brain-derived neurotrophic factor gene is associated with schizophrenia. Schizophr. Res. 65:15-18.

    Article  PubMed  Google Scholar 

  • Takahashi, M., Hayashi, S., Kakita, A., Wakabayashi, K., Fukuda, M., Kameyama, S., Tanaka, R., Takahashi, H., and Nawa, H. (1999). Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res. 818:579-582.

    Article  PubMed  Google Scholar 

  • Takahashi, M., Shirakawa, O., Toyooka, K., Kitamura, N., Hashimoto, T., Maeda, K., Koizumi, S., Wakabayashi, K., Takahashi, H., Someya, T., and Nawa, H. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol. Psychiatry 5:293-300.

    Article  PubMed  Google Scholar 

  • Timmusk, T., Belluardo, N., Metsis, M., and Persson, H. (1993). Widespread and developmen-tally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues. Eur. J. Neurosci. 5:605-613.

    Article  PubMed  Google Scholar 

  • Timmusk, T., Belluardo, N., Persson, H., and Metsis, M. (1994). Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60:287-291.

    Article  PubMed  Google Scholar 

  • Tokuoka, H., Saito, T., Yorifuji, H., Wei, F., Kishimoto, T., and Hisanaga, S. (2000). Brain-derived neurotrophic factor-induced phosphorylation of neurofilament-H subunit in primary cultures of embryo rat cortical neurons. J. Cell Sci. 113(Pt 6):1059-1068.

    PubMed  Google Scholar 

  • Toyooka, K., Asama, K., Watanabe, Y., Muratake, T., Takahashi, M., Someya, T., and Nawa, H. (2002). Decreased levels of brain-derived neurotrophic factor in serum of chronic schizo-phrenic patients. Psychiatry Res. 110:249-257.

    Article  PubMed  Google Scholar 

  • Tsai, S. J. (2005). Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med. Hypotheses 65:79-82.

    Article  PubMed  Google Scholar 

  • Wang, C. X., Song, J. H., Song, D. K., Yong, V. W., Shuaib, A., and Hao, C. (2006). Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death Differ. 13:1203-1212.

    Article  PubMed  Google Scholar 

  • Weeber, E. J., Beffert, U., Jones, C., Christian, J. M., Forster, E., Sweatt, J. D., and Herz, J. (2002). Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944-39952.

    Article  PubMed  Google Scholar 

  • Xu, B., Gottschalk, W., Chow, A., Wilson, R. I., Schnell, E., Zang, K., Wang, D., Nicoll, R. A., Lu, B., and Reichardt, L. F. (2000). The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mecha-nism involving TrkB. J. Neurosci. 20:6888-6897.

    PubMed  Google Scholar 

  • Yang, C. B., Zheng, Y. T., Kiser, P. J., and Mower, G. D. (2006). Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex. Eur. J. Neurosci. 23:2804-2808.

    Article  PubMed  Google Scholar 

  • Yin, Y., Edelman, G. M., and Vanderklish, P. W. (2002). The brain-derived neurotrophic factor enhances synthesis of Arc in synaptoneurosomes. Proc. Natl. Acad. Sci. USA99:2368-2373.

    Article  PubMed  Google Scholar 

  • Ying, S. W., Futter, M., Rosenblum, K., Webber, M. J., Hunt, S. P., Bliss, T. V., and Bramham, C. R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22:1532-1540.

    PubMed  Google Scholar 

  • Yoshida, M., Assimacopoulos, S., Jones, K. R., and Grove, E. A. (2006). Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537-545.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ringstedt, T. (2008). A Tale of Two Genes: Reelin and BDNF. In: Fatemi, S.H. (eds) Reelin Glycoprotein. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76761-1_16

Download citation

Publish with us

Policies and ethics