Skip to main content

Functional Genomics and Bioinformatics of the Phytophthora sojae Soybean Interaction

  • Chapter
  • 1399 Accesses

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

Oomycete plant pathogens such as Phytophthora species and downy mildews cause destructive diseases in an enormous variety of crop plant species as well as forests and native ecosystems. These pathogens are most closely related to algae in the kingdom Stramenopiles, and hence have evolved plant pathogenicity independently of other plant pathogens such as fungi. We have used bioinformatic analysis of genome sequences and EST collections, together with functional genomics to identify plant and pathogen genes that may be key players in the interaction between the soybean pathogen Phytophthora sojae and its host. In P. sojae, we have identified many rapidly diversifying gene families that encode potential pathogenicity factors including protein toxins, and a class of proteins (avirulence or effector proteins) that appear to have the ability to penetrate plant cells. Transcriptomic analysis of quantitative or multigenic resistance against P. sojae in soybean has revealed that there are widespread adjustments in host gene expression in response to infection, and that some responses are unique to particular resistant cultivars. These observations lay the foundation for dissecting the interplay between pathogen and host genes during infection at a whole-genome level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R.L., Bittner-Eddy, P.D., Grenville-Briggs, L.J., Meitz, J.C., Rehmany, A.P., Rose, L.E., and Beynon, J.L., 2004, Host-parasite coevolutionary conflict between Arabidopsis and downy mildew, Science 306:1957–1960.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, M.R., Whisson, S.C., Pritchard, L., Bos, J.I., Venter, E., Avrova, A.O., Rehmany, A.P., Bohme, U., Brooks, K., Cherevach, I., Hamlin, N., White, B., Fraser, A., Lord, A., Quail, M.A., Churcher, C., Hall, N., Berriman, M., Huang, S., Kamoun, S., Beynon, J.L., and Birch, P.R., 2005, An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm, Proc. Natl. Acad. Sci. USA 102:7766–7771.

    Article  PubMed  CAS  Google Scholar 

  • Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F., 2000, A kingdom-level phylogeny of eukaryotes based on combined protein data, Science 290:972–977.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini, Y., Krieger, A.M., and Yekutieli, D., 2006, Adaptive linear step-up procedures that control the false discovery rate, Biometrika 93:491–507.

    Article  Google Scholar 

  • Bhattacharjee, S., Hiller, N.L., Liolios, K., Win, J., Kanneganti, T.D., Young, C., Kamoun, S., and Haldar, K., 2006, The malarial host-targeting signal is conserved in the Irish potato famine pathogen, PLoS Pathog. 2:e50.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, M.K., Narayanan, N.N., Gao, H., Santra, D.K., Salimath, S.S., Kasuga, T., Liu, Y., Espinosa, B., Ellison, L., Marek, L., Shoemaker, R., Gijzen, M., and Buzzell, R.I., 2005, Identification of a large cluster of coiled coil-nucleotide binding site—-leucine rich repeat-type genes from the Rps1 region containing Phytophthora resistance genes in soybean, Theor. Appl. Genet. 111:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Birch, P.R., Rehmany, A.P., Pritchard, L., Kamoun, S., and Beynon, J.L., 2006, Trafficking arms: oomycete effectors enter host plant cells, Trends Microbiol. 14:8–11.

    Article  PubMed  CAS  Google Scholar 

  • Bos, J.I.B., Kanneganti, T.-D., Young, C., Cakir, C., Huitema, E., Win, J., Armstrong, M., Birch, P.R.J., and Kamoun, S., 2006, The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1induced cell death in Nicotiana benthamiana, Plant J. 48:165–176.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, K.D., Dorrance, A.E., VanToai, T.T., and St. Martin, S.K., 2003a, Quantitative trait loci for partial resistance to Phytophthora sojae in soybean, Crop Sci. 43:1610–1617.

    Article  CAS  Google Scholar 

  • Burnham, K.D., Dorrance, A.E., Francis, D.M., Fioritto, R.J., and St-Martin, S.K., 2003b, Rps8, A New Locus in Soybean for Resistance to Phytophthora sojae, Crop Sci. 43:101–105.

    Article  CAS  Google Scholar 

  • Chang, J.H., Goel, A.K., Grant, S.R., and Dangl, J.L. 2004. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria, Curr. Opin. Microbiol. 7:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Colon, L.T., Budding, D.J., Keizer, L.C.P., and Pieters, M.M.J., 1995, Components of resistance to late blight (Phytophthora infestans) in eight South American Solanum species, Eur. J. Plant Pathol. 101:441–456.

    Article  Google Scholar 

  • Dorrance, A.E., and Schmitthenner, A.F., 2000, New sources of resistance to Phytophthora sojae in the soybean plant introductions, Plant Dis. 84:1303–1308.

    Article  CAS  Google Scholar 

  • Dorrance, A.E., McClure, S.A., and St. Martin, S.K., 2003a, Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio, Plant Dis. 87:308–312.

    Article  Google Scholar 

  • Dorrance, A.E., McClure, S.A., and DeSilva, A., 2003b, Pathogenic diversity of Phytophthora sojae in Ohio soybean fields, Plant Dis. 87:139–146.

    Article  Google Scholar 

  • Erwin, D.C., and Ribiero, O.K., 1996, Phytophthora Diseases Worldwide, APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M., and Nurnberger, T., 2002, NPP1, A Phytophthora associated trigger of plant defense in parsley and Arabidopsis, Plant J. 32:375–390.

    Article  PubMed  CAS  Google Scholar 

  • Fšrster, H., Tyler, B.M., and Coffey, M.D., 1994, Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses, Mol. Plant Microbe In. 7:780–791.

    Google Scholar 

  • Fry, W.E., and Goodwin, S.B., 1997, Re-emergence of potato and tomato late blight in the United States, Plant Dis. 81:1349–1357.

    Article  Google Scholar 

  • Gijzen, M., Forster, H., Coffey, M.D., and Tyler, B.M., 1996, Cosegregation of Avr4 and Avr6 in Phytophthora sojae, Can. J. Bot. 74:800–802.

    Article  Google Scholar 

  • Govers, F., and Gijzen, M., 2006, Phytophthora genomics: the plant destroyers’ genome decoded, Mol. Plant Microbe In. 19:1295–1301.

    Article  CAS  Google Scholar 

  • Grau, C.R., Dorrance, A.E., Bond, J., and Russin, J.S., 2004, Chapter 14. Fungal diseases, in H.R. Boerma and J.E. Specht, eds., Soybeans: Improvement, Production, and Uses, Amer. Soc. Agron., Madison, Wisconsin.

    Google Scholar 

  • Hiller, N.L., Bhattacharjee, S., van-Ooij, C., Liolios, K., Harrison, T., Lopez-Estra–o, C., and Haldar, K., 2004, A host-targeting signal in virulence proteins reveals a secretome in malarial infection, Science 306:1934–1937.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, R.H., Tyler, B.M., and Govers, F., 2006, Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions, Mol. Plant Microbe Interact. 19:1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Judelson, H.S., 1997, The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge, Fungal Genet. Biol. 22:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Latijnhouwers, M., de Wit, P.J., and Govers, F., 2003, Oomycetes and fungi: similar weaponry to attack plants, Trends Microbiol. 11:462–469.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor, T., Bhattacharyya, M., Tyler, B.M., Bhat, R., Schmitthenner, A.F., and Gijzen, M., 2002, Genetic and physical mapping of Avr1a in Phytophthora sojae, Genetics 160:949–959.

    PubMed  CAS  Google Scholar 

  • Marti, M., Good, R.T., Rug, M., Knuepfer, E., and Cowman, A.F., 2004, Targeting malaria virulence and remodeling proteins to the host erythrocyte, Science 306:1930–1933.

    Article  PubMed  CAS  Google Scholar 

  • May, K.J., Whisson, S.C., Zwart, R.S., Searle, I.R., Irwin, J.A.G., Maclean, D.J., Carroll, B.J., and Drenth, A., 2002, Inheritance and mapping of eleven avirulence genes in Phytophthora sojae, Fungal Genet. Biol. 37:1–12.

    Article  PubMed  CAS  Google Scholar 

  • McBlain, B.A., Zimmerly, M.M., Schmitthenner, A.F., and Hacker, J.K., 1991, Tolerance to phytophthora rot in soybean: I. Studies of the cross Ripley × Harper, Crop Sci. 31:1405–1411.

    Article  Google Scholar 

  • Mideros, S., Nita, M., and Dorrance, A.E., 2007, Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean, Phytopath. 97:655–662.

    Article  Google Scholar 

  • Olah, A.F., and Schmitthenner, A.F., 1985, A growth chamber test for measuring phytophthora root rot tolerance in soybean [Glycine max] seedlings. Phytopath. 75:546–548.

    Google Scholar 

  • Qutob, D., Kamoun, S., and Gijzen, M., 2002, Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy, Plant J. 32:361–373.

    Article  PubMed  CAS  Google Scholar 

  • Rehmany, A.P., Gordon, A., Rose, L.E., Allen, R.L., Armstrong, M.R., Whisson, S.C., Kamoun, S., Tyler, B.M., Birch, P.R., and Beynon, J.L., 2005, Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines, Plant Cell 17:1839–1850.

    Article  PubMed  CAS  Google Scholar 

  • Rizzo, D.M., Garbelotto, M., Davidson, J.M., Slaughter, G.W., and Koike, S.T., 2002, Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California, Plant Dis. 86:205–214.

    Article  Google Scholar 

  • Schmitthenner, A.F., 1985, Problems and progress in controlling Phytophthora root rot of soybean, Plant Dis. 69:362–368.

    Article  Google Scholar 

  • Schmitthenner, A.F., Hobe, M., and Bhat, R.G. 1994. Phytophthora sojae races in Ohio over a 10-year interval. Plant Dis. 78: 269–276.

    Article  Google Scholar 

  • Shan, W., Cao, M., Leung, D., and Tyler, B.M., 2004, The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b, Mol. Plant Microbe In.. 17:394–403.

    Article  CAS  Google Scholar 

  • Slusarenko, A.J., and Schlaich, N.L., 2003, Pathogen profile. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica), Mol. Plant Path. 4:159–170.

    Article  Google Scholar 

  • The Gene Ontology Consortium, 2000, Gene ontology: tool for the unification of biology, Nat. Genet. 25:25–29.

    Google Scholar 

  • Tooley, P.W., and Grau, C.R., 1982, Identification and quantitative characterization of rate-reducing resistance to Phytophthora megasperma f.sp. glycinea in soybean seedlings, Phytopath. 72:727–733.

    Google Scholar 

  • Tooley, P.W., and Grau, C.R., 1984, Field characterization of rate-reducing resistance to Phytophthora megasperma f.sp. glycinea in soybean, Phytopath. 74:1201–1208.

    Article  Google Scholar 

  • Tripathy, S., Pandey, V.N., Fang, B., Salas, F., and Tyler, B.M., 2006, VMD: A community annotation database for microbial genomes, Nucl. Acids Res. 34:D379–D381.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, B., Forster, H., and Coffey, M.D., 1995, Inheritance of avirulence factors and restriction fragment length polymorphism markers in outcrosses of the oomycete Phytophthora sojae, Mol. Plant Microbe In. 8:515–523.

    CAS  Google Scholar 

  • Tyler, B.M., 2002, Molecular basis of recognition between Phytophthora species and their hosts, Annu. Rev. Phytopath. 40:137–167.

    Article  CAS  Google Scholar 

  • Tyler, B.M., 2007, Phytophthora sojae: root rot pathogen of soybean and model oomycete, Mol. Plant Path. 8:1–8.

    Article  CAS  Google Scholar 

  • Tyler, B.M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R.H.Y., and et al., 2006, Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis, Science 313:1261–1266.

    Article  PubMed  CAS  Google Scholar 

  • Vega-Sanchez, M.E., Redinbaugh, M.G., Costanzo, S., and Dorrance, A.E., 2005, Spatial and temporal expression analysis of defense-related genes in soybean cultivars with different levels of partial resistance to Phytophthora sojae, Physiol. Mol. Plant Path. 66:175–182.

    Article  CAS  Google Scholar 

  • Whisson, S.C., Drenth, A., Maclean, D.J., and Irwin, J.A.G., 1994, Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes, Curr. Genet. 27:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Whisson, S.C., Drenth, A., Maclean, D.J., and Irwin, J.A.G., 1995, Phytophthora sojae avirulence genes, RAPD and RFLP markers used to construct a detailed genetic linkage map, Mol. Plant Microbe In. 8:988–995.

    CAS  Google Scholar 

  • Whisson, S.C., Basnayake, S., Maclean, D.J., Irwin, J.A., and Drenth, A., 2004, Phytophthora sojae avirulence genes Avr4 and Avr6 are located in a 24kb, recombination-rich region of genomic DNA, Fungal Genet. Biol. 41:62–74.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Irizarry, R.A., Gentleman, R., Martinez-Murillo, F., and Spencer, F., 2004, A model-based background adjustment for oligonucleotide expression arrays, J. Am. Stat. Assoc. 99:909–917.

    Article  Google Scholar 

  • Young, N.D., 1996, QTL mapping and quantitative disease resistance in plants, Ann. Rev. Phytopathol. 34:479–501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tyler, B.M. et al. (2008). Functional Genomics and Bioinformatics of the Phytophthora sojae Soybean Interaction. In: Gustafson, J., Taylor, J., Stacey, G. (eds) Genomics of Disease. Stadler Genetics Symposia Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76723-9_6

Download citation

Publish with us

Policies and ethics