Skip to main content

Precise Measurements of Diffusion in Solution by Fluorescence Correlations Spectroscopy

  • Chapter
  • First Online:
  • 2992 Accesses

Abstract

The chapter presents a general introduction to the method of fluorescence correlation spectroscopy (FCS) and its recently developed modification, dual-focus FCS. It explains the general optical setup of an FCS system, data acquisition, and data analysis. It discusses numerous potential optical and photophysical artifacts of FCS measurements and explains how these problems are circumvented by dual-focus FCS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Magde, E. Elson, W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy.” Phys. Rev. Lett. 29 (1972) 705–8.

    Article  ADS  Google Scholar 

  2. E. L. Elson, D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory.” Biopolymers 13 (1974) 1–27.

    Article  Google Scholar 

  3. D. Magde, E. Elson, W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization.” Biopolymers 13 (1974) 29–61.

    Article  Google Scholar 

  4. N. O. Petersen, “Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements.” Biophys. J. 49 (1986) 809–15.

    Article  ADS  Google Scholar 

  5. N. O. Petersen, D. C. Johnson, M. J. Schlesinger, “Scanning fluorescence correlation spectroscopy. II. Application to virus glycoprotein aggregation.” Biophys. J. 49 (1986) 817–20.

    Article  Google Scholar 

  6. J. Widengren, Ü. Mets, “Conceptual basis of fluorescence correlation spectroscopy and related techniques as tools in bioscience.” In: Single-Molecule Detection in Solution—Methods and Applications. C. Zander, J. Enderlein, R. A. Keller, eds. (Wiley-VCH, Berlin, 2002), pp. 69–95.

    Chapter  Google Scholar 

  7. P. Schwille, “Fluorescence correlation spectroscopy and its potential for intracellular applications.” Cell. Biochem. Biophys. 34 (2001) 383–408.

    Article  Google Scholar 

  8. S. T. Hess, S. Huang, A. A. Heikal, W. W. Webb, “Biological and chemical applications of fluorescence correlation spectroscopy: A Review.” Biochem. 41 (2002) 697–705.

    Article  Google Scholar 

  9. R. Rigler, E. Elson (eds.), Fluorescence Correlation Spectroscopy (Springer, Berlin, 2001).

    Google Scholar 

  10. M. Böhmer, J. Enderlein, “Single molecule detection on surfaces with the confocal laser scanning microscope.” In: Single-Molecule Detection in Solution— Methods and Applications, C. Zander, J. Enderlein, R. A. Keller, eds. (Wiley-VCH, Berlin, 2002), pp. 145–183.

    Chapter  Google Scholar 

  11. J. Enderlein, F. Pampaloni, “Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes.” J. Opt. Soc. Am. A 21 (2004) 1553–1558.

    Article  ADS  Google Scholar 

  12. M. Wahl I. Gregor, M. Patting, J. Enderlein, “Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting.” Opt. Expr. 11 (2003) 3583–3591.

    Article  ADS  Google Scholar 

  13. A. Einstein, Investigations on the Theory of the Brownian Movement (Dover, New York, 1985).

    Google Scholar 

  14. A. M. Weljie, A. P. Yamniuk, H. Yoshino, Y. Izumi, H. J. Vogel, “Protein conformational changes studied by diffusion NMR spectroscopy: Application to helix-loop-helix calcium binding proteins.” Protein Sci. 12 (2003) 228–236.

    Article  Google Scholar 

  15. B. J. Berne, R. Pecora, Dynamic Light Scattering (Dover, New York, 2000).

    Google Scholar 

  16. P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1991).

    Google Scholar 

  17. D. Harvey, Modern Analytical Chemistry (McGraw-Hill, Boston, 2000), pp. 593–595.

    Google Scholar 

  18. J. L. Cole, and Hansen J. C., “Analytical ultracentrifugation as a contemporary biomolecular research tool.” J. Biomol. Tech. 10 (1999) 163–176.

    Google Scholar 

  19. W. Liu, T. Cellmer, D. Keerl, J. M. Prausnitz, H. W. Blanch, “Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements.” Biotechnol. Bioeng. 90 (2005) 482–490.

    Article  Google Scholar 

  20. T. Kiefhaber, R. Rudolph, H. H. Kohler, J. Buchner, “Protein aggregation in vitro and in vivo: A quantitative model of the kinetic competition between folding and aggregation.” Nature Biotechnol. 9 (1991) 825–829.

    Article  Google Scholar 

  21. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration.” ChemPhysChem 6 (2005) 2324–2336.

    Article  Google Scholar 

  22. J. Enderlein, “Dependence of the optical saturation of fluorescence on rotational diffusion.” Chem. Phys. Lett. 410 (2005) 452–456.

    Article  ADS  Google Scholar 

  23. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, J. Enderlein, “Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements.” ChemPhysChem 8 (2007) 433–443.

    Article  Google Scholar 

  24. B. K. Müller, E. Zaychikov, C. Bräuchle, D. C. Lamb, “Cross talk free fluorescence cross correlation spectroscopy in live cells.” Biophys. J. 89 (2005) 3508–3522.

    Article  Google Scholar 

  25. C. B. Müller, K. Weiss, W. Richtering, A. Loman, J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy.” Opt. Expr. 16 (2008) 4322–4329.

    Article  ADS  Google Scholar 

  26. C. B. Müller, A. Loman, W. Richtering, J. Enderlein, “Dual-focus fluorescence correlation spectroscopy of colloidal solutions: influence of particle size.” J. Phys. Chem. B 112 (2008) 8236–8240.

    Article  Google Scholar 

  27. A. Loman, T. Dertinger, F. Koberling, J. Enderlein, “Comparison of optical saturation effects in conventional and dual-focus fluorescence correlation spectroscopy.” Chem. Phys. Lett. 459 (2008) 18–21.

    Article  ADS  Google Scholar 

  28. C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy.” Eur. Phys. Lett. 83 (2008) 46001.

    Article  ADS  Google Scholar 

  29. C. T. Culbertson, S. C. Jacobson, J. M. Ramsey, “Diffusion coefficient measurements in microfluidic devices.” Talanta 56 (2002) 365–373.

    Article  Google Scholar 

  30. Z. Petrasek, P. Schwille, “Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy.” Biophys. J. 94 (2008) 1437–1448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Enderlein, J. (2009). Precise Measurements of Diffusion in Solution by Fluorescence Correlations Spectroscopy. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_9

Download citation

Publish with us

Policies and ethics