Skip to main content

Fluorescence Imaging at Sub-Diffraction-Limit Resolution with Stochastic Optical Reconstruction Microscopy

  • Chapter
  • First Online:

Abstract

Fluorescence microscopy is an essential tool in biological research. One major drawback of conventional light microscopy, however, is its relatively low resolution, which is limited by the diffraction of light to several hundreds of nanometers. In recent years, a number of fluorescence imaging techniques with sub-diffraction-limit resolution have been developed, achieving a spatial resolution of tens of nanometers in both the lateral and axial dimensions. This chapter focuses on one of these methods, stochastic optical reconstruction microscopy (STORM), which utilizes photoswitchable flourescent probes to separate spatially overlapping images of individual fluorophores in time and construct superresolution images from the precise positions of these fluorophores determined from the single-molecule images. Application of this technique has been extended to imaging fluorophores of different colors simultaneously, in three dimensions, and in living cells. This chapter describes the implementation of multicolor and three-dimensional STORM to imaging cellular structures. It begins by discussing the choice of photoswitchable fluorescent probe and the scheme with which to label a cellular target of interest. The instrumentation and methods for performing a STORM experiment are then described, followed by an outline of the analysis routines used for creating a STORM image. Applications of the technique along with general protocols and troubleshooting are given at the conclusion of the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hell, S. W., and J. Wichmann. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19:780–782.

    Article  ADS  Google Scholar 

  2. Gustafsson, M. G. L. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102:13081–13086.

    Article  ADS  Google Scholar 

  3. Rust, M. J., M. Bates, and X. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–796.

    Article  Google Scholar 

  4. Betzig, E. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645.

    Article  ADS  Google Scholar 

  5. Hess, S. T., T. P. K. Girirajan, and M. D. Mason. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–4272.

    Article  ADS  Google Scholar 

  6. Hell, S. W. 2007. Far-field optical nanoscopy. Science 316:1153–1158.

    Article  ADS  Google Scholar 

  7. Thompson, R. E., D. R. Larson, and W. W. Webb. 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82:2775–2783.

    Article  Google Scholar 

  8. Gelles, J., B. J. Schnapp, and M. P. Sheetz. 1988. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453.

    Article  ADS  Google Scholar 

  9. Ghosh, R. N., and W. W. Webb. 1994. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66:1301–1318.

    Article  ADS  Google Scholar 

  10. van Oijen, A. M., J. Kohler, J. Schmidt, M. Muller, and G. J. Brakenhoff. 1998. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292:183–187.

    Article  Google Scholar 

  11. Lacoste, T. D., X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss. 2000. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97:9461–9466.

    Article  ADS  Google Scholar 

  12. Yildiz, A., J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin. 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science 300:2061–2065.

    Article  ADS  Google Scholar 

  13. Gordon, M. P., T. Ha, and P. R. Selvin. 2004. Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101:6462–6465.

    Article  ADS  Google Scholar 

  14. Qu, X. H., D. Wu, L. Mets, and N. F. Scherer. 2004. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 101:11298–11303.

    Article  ADS  Google Scholar 

  15. Lidke, K. A., B. Rieger, T. M. Jovin, and R. Heintzmann. 2005. Superresolution by localization of quantum dots using blinking statistics. Opt. Exp. 13:7052–7062.

    Article  ADS  Google Scholar 

  16. Churchman, L. S., Z. Okten, R. S. Rock, J. F. Dawson, and J. A. Spudich. 2005. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102:1419–1423.

    Article  ADS  Google Scholar 

  17. Bates, M., B. Huang, G. T. Dempsey, and X. Zhuang. 2007. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753.

    Article  ADS  Google Scholar 

  18. Bock, H., C. Geisler, C. A. Wurm, C. Von Middendorff, S. Jakobs, A. Schonle, A. Egner, S. W. Hell, and C. Eggeling. 2007. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88:161–165.

    Article  ADS  Google Scholar 

  19. Shroff, H., C. G. Galbraith, J. A. Galbraith, H. White, J. Gillette, S. Olenych, M. W. Davidson, and E. Betzig. 2007. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104:20308–20313.

    Article  ADS  Google Scholar 

  20. Bates, M., T. R. Blosser, and X. Zhuang. 2005. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94:108101.

    Article  ADS  Google Scholar 

  21. Folling, J., V. Belov, R. Kunetsky, R. Medda, A. Schonle, A. Egner, C. Eggeling, M. Bossi, and S. W. Hell. 2007. Photochromic rhodamines provide nanoscopy with optical sectioning. Angew. Chem. Int. Ed. Engl. 46: 6266–6270.

    Article  Google Scholar 

  22. Bossi, M., J. Folling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schonle, and S. W. Hell. 2008. Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8:2463–2468.

    Google Scholar 

  23. Patterson, G. H., and J. Lippincott-Schwartz. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877.

    Article  ADS  Google Scholar 

  24. Habuchi, S., R. Ando, P. Dedecker, W. Verheijen, H. Mizuno, A. Miyawaki, and J. Hofkens. 2005. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102:9511–9516.

    Article  ADS  Google Scholar 

  25. Ando, R., H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki. 2002. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99: 12651–12656.

    Article  ADS  Google Scholar 

  26. Wiedenmann, J., S. Ivanchenko, F. Oswald, F. Schmitt, C. Rocker, A. Salih, K.-D. Spindler, and G. U. Nienhaus. 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101:15905–15910.

    Article  ADS  Google Scholar 

  27. Gurskaya, N. G., V. V. Verkhusha, A. S. Shcheglov, D. B. Staroverov, T. V. Chepurnykh, A. F. Fradkov, S. Lukyanov, and K. A. Lukyanov. 2006. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461–465.

    Article  Google Scholar 

  28. Chudakov, D. M., V. V. Verkhusha, D. B. Staroverov, E. A. Souslova, S. Lukyanov, and K. A. Lukyanov. 2004. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22:1435–1439.

    Article  Google Scholar 

  29. Stiel, A. C., S. Trowitzsch, G. Weber, M. Andresen, C. Eggeling, S. W. Hell, S. Jakobs, and M. C. Wahl. 2007. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 402:35–42.

    Article  Google Scholar 

  30. Tsutsui, H., S. Karasawa, H. Shimizu, N. Nukina, and A. Miyawaki. 2005. Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep. 6:233–238.

    Article  Google Scholar 

  31. Huang, B., W. Wang, M. Bates, and X. Zhuang. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813.

    Article  ADS  Google Scholar 

  32. Juette, M. F., T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf. 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527–529.

    Article  Google Scholar 

  33. Kao, H. P., and A. S. Verkman. 1994. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67:1291–1300.

    Article  ADS  Google Scholar 

  34. Holtzer, L., T. Meckel, and T. Schmidt. 2007. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90:053902.

    Article  ADS  Google Scholar 

  35. Huang, B., S. A. Jones, B. Brandenburg, and X. Zhuang 2008. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5:1047–1052.

    Google Scholar 

  36. Shroff, H., C. G. Galbraith, J. A. Galbraith, and E. Betzig. 2008. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5:417–423.

    Article  Google Scholar 

  37. Hess, S. T., T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg. 2007. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104:17370–17375.

    Article  ADS  Google Scholar 

  38. Lord, S. J., N. R. Conley, H. L. Lee, R. Samuel, N. Liu, R. J. Twieg, and W. E. Moerner. 2008. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J. Am. Chem. Soc. 130:9204–9205.

    Article  Google Scholar 

  39. Giepmans, B. N. G., S. R. Adams, M. H. Ellisman, and R. Y. Tsien. 2006. The fluorescent toolbox for assessing protein location and function. Science 312:217–224.

    Article  ADS  Google Scholar 

  40. Chen, I., and A. Y. Ting. 2005. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotech. 16:35–40.

    Article  Google Scholar 

  41. Prescher, J. A., and C. R. Bertozzi. 2005. Chemistry in living systems. Nat. Chem. Biol. 1:13–21.

    Article  Google Scholar 

  42. Lin, M. Z., and L. Wang. 2008. Selective labeling of proteins with chemical probes in living cells. Physiology (Bethesda, MD) 23:131–141.

    Article  Google Scholar 

  43. O’Hare, H. M., K. Johnsson, and A. Gautier. 2007. Chemical probes shed light on protein function. Curr. Opin. Struct. Biol. 17:488–494.

    Article  Google Scholar 

  44. Griffin, B. A., S. R. Adams, and R. Y. Tsien. 1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272.

    Article  ADS  Google Scholar 

  45. Guignet, E. G., R. Hovius, and H. Vogel. 2004. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22:440–444.

    Article  Google Scholar 

  46. Lin, C. W., and A. Y. Ting. 2006. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128:4542–4543.

    Article  Google Scholar 

  47. Chen, I., M. Howarth, W. Y. Lin, and A. Y. Ting. 2005. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2:99–104.

    Article  Google Scholar 

  48. Fernandez-Suarez, M., H. Baruah, L. Martinez-Hernandez, K. T. Xie, J. M. Baskin, C. R. Bertozzi, and A. Y. Ting. 2007. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25:1483–1487.

    Article  Google Scholar 

  49. Tanaka, T., T. Yamamoto, S. Tsukiji, and T. Nagamune. 2008. Site-specific protein modification on living cells catalyzed by Sortase. ChemBioChem 9:802–807.

    Article  Google Scholar 

  50. Zhou, Z., P. Cironi, A. J. Lin, Y. Xu, S. Hrvatin, D. E. Golan, P. A. Silver, C. T. Walsh, and J. Yin. 2007. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2:337–346.

    Article  Google Scholar 

  51. Ramos-Vara, J. A. 2005. Technical aspects of immunohistochemistry. Vet. Pathol. 42:405–426.

    Article  Google Scholar 

  52. Skepper, J. N. 2000. Immunocytochemical strategies for electron microscopy: choice or compromise. J. Microsc. 199:1–36.

    Article  Google Scholar 

  53. Glauert, A. M., and P. R. Lewis. 1998. Biological specimen preparation for transmission electron microscopy. Princeton University Press, Princeton, NJ.

    Google Scholar 

  54. McIntosh, J. M., ed. 2007. Cellular electron microscopy (Methods in Cell Biology, Vol. 79). Academic Press, San Diego, CA.

    Google Scholar 

  55. Naviaux, R. K., E. Costanzi, M. Haas, and I. M. Verma. 1996. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J. Virol. 70:5701–5705.

    Google Scholar 

  56. Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.

    Article  ADS  Google Scholar 

  57. Buchschacher, G. L., Jr., and F. Wong-Staal. 2000. Development of lentiviral vectors for gene therapy for human diseases. Blood 95:2499–2504.

    Google Scholar 

  58. Andresen, M., A. C. Stiel, J. Folling, D. Wenzel, A. Schonle, A. Egner, C. Eggeling, S. W. Hell, and S. Jakobs. 2008. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat. Biotechnol. 26:1035–1040.

    Google Scholar 

  59. Stetson, P. B. 1987. DAOPHOT: a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacific 99:191–222.

    Article  ADS  Google Scholar 

  60. Egner, A., and S. W. Hell. 2006. Handbook of biological confocal microscopy, Chapter 20. Springer, New York.

    Google Scholar 

  61. Hohng, S., C. Joo, and T. Ha. 2004. Single-molecule three-color FRET. Biophys. J. 87:1328–1337.

    Article  ADS  Google Scholar 

  62. Cui, B. X., C. B. Wu, L. Chen, A. Ramirez, E. L. Bearer, W. P. Li, W. C. Mobley, and S. Chu. 2007. One at a time, live tracking of NGF axonal transport using quantum dots Proc. Natl. Acad. Sci. USA 104:13666–13671.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank W. M. Bates for a critical reading of the manuscript and other members of the Zhuang laboratory for helpful advice and discussions. This work was supported in part by the National Institutes of Health. XZ is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dempsey, G.T., Wang, W., Zhuang, X. (2009). Fluorescence Imaging at Sub-Diffraction-Limit Resolution with Stochastic Optical Reconstruction Microscopy. In: Hinterdorfer, P., Oijen, A. (eds) Handbook of Single-Molecule Biophysics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76497-9_4

Download citation

Publish with us

Policies and ethics