Skip to main content

Biventricular Function at High Altitude: Implications for Regulation of Stroke Volume in Chronic Hypoxia

  • Conference paper
Book cover Hypoxia and the Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 618))

Abstract

The myocardium is well protected against chronic hypoxia. In chronic hypoxia stroke volume falls both at rest and on exercise. The fall in stroke volume is associated with reduction in left ventricular dimensions and filling pressure. An obvious explanation for this is the reduction in plasma volume observed at high altitude, but this does not appear to be the whole story. Neither is left ventricular systolic function abnormal even at the summit of Mount Everest. Hypoxia itself may have a direct effect on impairing myocardial relaxation. Increased pulmonary vascular resistance leads to right ventricular pressure overload. This may impair right ventricular function, and reduce stroke volume and venous return to the left atrium. Interaction between the right and left ventricles, which share a common septum and are potentially constrained in volume by the pericardium, may impair diastolic left ventricular filling as a consequence of right ventricular pressure overload, and hence reduce stroke volume. It is questionable how clinically significant is this left ventricular diastolic dysfunction. The relative importance of different mechanisms which reduce stroke volume probably depends whether hemodynamics are measured at rest or on exercise. Intervention with sildenafil to ameliorate hypoxic pulmonary vasoconstriction is associated with both an increase in exercise capacity and stroke volume in hypoxia. Whether these have a causal association remains to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander JK and Grover RF. Mechanism of reduced cardiac stroke volume at high altitude. Clin Cardiol6:301-303, 1983.

    Article  CAS  PubMed  Google Scholar 

  2. Arias-Stella J and Topilsky M. Anatomy of the coronary circulation at high altitude. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by Porter R and Knight J. London, England: Churchill-Livingstone, 1971, p.149-158.

    Chapter  Google Scholar 

  3. Badke FR. Left ventricular dimensions and function during right ventricular pressure overload. Am J Physiol242: H611-H618, 1982.

    CAS  PubMed  Google Scholar 

  4. Badke FR. Left ventricular dimensions and function during exercise in dogs with chronic right ventricular pressure overload. Am J Cardiol53:1187-1193, 1984.

    Article  CAS  PubMed  Google Scholar 

  5. Bhargava V and Sunnerhagen KS. Left ventricular asynchrony in patients with pulmonary hypertension. J Appl Physiol69:517-522, 1990.

    CAS  PubMed  Google Scholar 

  6. Bing OH, Brooks WW and Messer JV. Effects of isoproterenol on heart muscle performance during myocardial hypoxia. J Mol Cell Cardiol4:319-328, 1972.

    Article  CAS  PubMed  Google Scholar 

  7. Bing OH, Brooks WW and Messer JV. Heart muscle viability following hypoxia: protective effect of acidosis. Science180:1297-1298, 1973.

    Article  CAS  PubMed  Google Scholar 

  8. Blanchard DG and Dittrich HC. Pericardial adaptation in severe chronic pulmonary hypertension. An intraoperative transesophageal echocardiographic study. Circulation85:1414-1422, 1992.

    CAS  PubMed  Google Scholar 

  9. Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y and Richalet JP. Operation Everest III (Comex ‘97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med161:264-270, 2000.

    CAS  PubMed  Google Scholar 

  10. Boussuges A, Pinet C, Molenat F, Burnet H, Ambrosi P, Badier M, Sainty JM and Orehek J. Left atrial and ventricular filling in chronic obstructive pulmonary disease. An echocardiographic and Doppler study. Am J Respir Crit Care Med162:670-675, 2000.

    CAS  PubMed  Google Scholar 

  11. Davila RV, Guest TM, Tuteur PG, Rowe WJ, Ladenson JH and Jaffe AS. Transient right but not left ventricular dysfunction after strenuous exercise at high altitude. J Am Coll Cardiol30:468-473, 1997.

    Article  Google Scholar 

  12. Davis KL, Mehlhorn U, Laine GA and Allen SJ. Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol78:132-137, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Dong SJ, Smith ER and Tyberg JV. Changes in the radius of curvature of the ventricular septum at end diastole during pulmonary arterial and aortic constrictions in the dog. Circulation86:1280-1290, 1992.

    CAS  PubMed  Google Scholar 

  14. Feneley MP, Olsen CO, Glower DD and Rankin JS. Effect of acutely increased right ventricular afterload on work output from the left ventricle in conscious dogs. Systolic ventricular interaction. Circ Res65:135-145, 1989.

    CAS  PubMed  Google Scholar 

  15. Fowles RE and Hultgren HN. Left ventricular function at high altitude examined by systolic time intervals and M-mode echocardiography. Am J Cardiol52:862-866, 1983.

    Article  CAS  PubMed  Google Scholar 

  16. Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M and Simonneau G. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med353:2148-2157, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Gan CT, Lankhaar JW, Marcus JT, Westerhof N, Marques KM, Bronzwaer JG, Boonstra A, Postmus PE and Vonk-Noordegraaf A. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol290: H1528-H1533, 2006.

    CAS  PubMed  Google Scholar 

  18. Ghofrani HA, Reichenberger F, Kohstall MG, Mrosek EH, Seeger T, Olschewski H, Seeger W and Grimminger F. Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med141:169-177, 2004.

    CAS  PubMed  Google Scholar 

  19. Gomez A and Mink S. Increased left ventricular stiffness impairs filling in dogs with pulmonary emphysema in respiratory failure. J Clin Invest78:228-240, 1986.

    Article  CAS  PubMed  Google Scholar 

  20. Gomez A and Mink S. Interaction between effects of hypoxia and hypercapnia on altering left ventricular relaxation and chamber stiffness in dogs. Am Rev Respir Dis 146:313-320, 1992.

    CAS  PubMed  Google Scholar 

  21. Grover RF and Alexander JK. Cardiac performance and the coronary circulation of man in chronic hypoxia. Cardiology56:197-206, 1971.

    Article  CAS  PubMed  Google Scholar 

  22. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, Rapmund G, Sun S, Janes C and Moore LG. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol74:312-318, 1993.

    CAS  PubMed  Google Scholar 

  23. Harris P, Heath D. The Human Pulmonary Circulation. 2nd Edition. Churchill Livingston: Edinburgh. 456, 1977.

    Google Scholar 

  24. Henderson V, Prince AL. The systolic discharge and the pericardial volume. Sam J Physiol35:116-118. 1914.

    Google Scholar 

  25. Hirata K, Ban T, Jinnouchi Y and Kubo S. Echocardiographic assessment of left ventricular function and wall motion at high altitude in normal subjects. Am J Cardiol68:1692-1697, 1991.

    Article  CAS  PubMed  Google Scholar 

  26. Hochachka PW, Clark CM, Holden JE, Stanley C, Ugurbil K and Menon RS. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Proc Natl Acad Sci USA93:1215-1220, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Holden JE, Stone CK, Clark CM, Brown WD, Nickles RJ, Stanley C and Hochachka PW. Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol79:222-228, 1995.

    CAS  PubMed  Google Scholar 

  28. Hsu AR, Barnholt KE, Grundmann NK, Lin JH, McCallum SW and Friedlander AL. Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol100:2031-2040, 2006.

    Article  CAS  PubMed  Google Scholar 

  29. Huez S, Retailleau K, Unger P, Pavelescu A, Vachiery JL, Derumeaux G and Naeije R. Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study. Am J Physiol Heart Circ Physiol289: H1391-H1398, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Kihara Y, Grossman W and Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res65:1029-1044, 1989.

    CAS  PubMed  Google Scholar 

  31. Kingma I, Tyberg JV and Smith ER. Effects of diastolic transseptal pressure gradient on ventricular septal position and motion. Circulation68:1304-1314, 1983.

    CAS  PubMed  Google Scholar 

  32. Klausen K, Robinson S, Micahel ED and Myhre LG. Effect of high altitude on maximal working capacity. J Appl Physiol21:1191-1194, 1966.

    CAS  PubMed  Google Scholar 

  33. Kullmer T, Kneissl G, Katova T, Kronenberger H, Urhausen A, Kindermann W, Marz W and Meier-Sydow J. Experimental acute hypoxia in healthy subjects: evaluation of systolic and diastolic function of the left ventricle at rest and during exercise using echocardiography. Eur J Appl Physiol Occup Physiol70:169-174, 1995.

    Article  CAS  PubMed  Google Scholar 

  34. Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjonsberg OH and Christensen G. Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol291: H507-H516, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Lenfant C, Torrance J, English E, Finch CA, Reynafarje C, Ramos J and Faura J. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J Clin Invest47:2652-2656, 1968.

    CAS  PubMed  Google Scholar 

  36. Louie EK, Lin SS, Reynertson SI, Brundage BH, Levitsky S and Rich S. Pressure and volume loading of the right ventricle have opposite effects on left ventricular ejection fraction. Circulation92:819-824, 1995.

    CAS  PubMed  Google Scholar 

  37. Maughan WL, Kallman CH and Shoukas A. The effect of right ventricular filling on the pressure-volume relationship of ejecting canine left ventricle. Circ Res49:382- 388, 1981.

    CAS  PubMed  Google Scholar 

  38. Miller AT, Jr. and Hale DM. Increased vascularity of brain, heart, and skeletal muscle of polycythemic rats. Am J Physiol219:702-704, 1970.

    PubMed  Google Scholar 

  39. Moustapha A, Kaushik V, Diaz S, Kang SH and Barasch E. Echocardiographic evaluation of left-ventricular diastolic function in patients with chronic pulmonary hypertension. Cardiology95:96-100, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Nelson GS, Sayed-Ahmed EY, Kroeker CA, Sun YH, Keurs HE, Shrive NG and Tyberg JV. Compression of interventricular septum during right ventricular pressure loading. Am J Physiol Heart Circ Physiol280: H2639-H2648, 2001.

    CAS  PubMed  Google Scholar 

  41. Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW and Rankin JS. Dynamic ventricular interaction in the conscious dog. Circ Res52:85-104, 1983.

    CAS  PubMed  Google Scholar 

  42. Penaloza D and Sime F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am J Med50:728-743, 1971.

    Article  CAS  PubMed  Google Scholar 

  43. Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM and Houston CS. Operation Everest II: Preservation of cardiac function at extreme altitude. J Appl Physiol63:531-539, 1987.

    CAS  PubMed  Google Scholar 

  44. Refsum H, Junemann M, Lipton MJ, Skioldebrand C, Carlsson E and Tyberg JV. Ventricular diastolic pressure-volume relations and the pericardium. Effects of changes in blood volume and pericardial effusion in dogs. Circulation64:997-1004, 1981.

    CAS  PubMed  Google Scholar 

  45. Richalet JP, Gratadour P, Robach P, Pham I, Dechaux M, Joncquiert-Latarjet A, Mollard P, Brugniaux J and Cornolo J. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med171:275-281, 2005.

    Article  PubMed  Google Scholar 

  46. Robach P, Dechaux M, Jarrot S, Vaysse J, Schneider JC, Mason NP, Herry JP, Gardette B and Richalet JP. Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure. J Appl Physiol89:29-37, 2000.

    CAS  PubMed  Google Scholar 

  47. Rubin LJ and Naeije R. Sildenafil for enhanced performance at high altitude? Ann Intern Med141:233-235, 2004.

    CAS  PubMed  Google Scholar 

  48. Schena M, Clini E, Errera D and Quadri A. Echo-Doppler evaluation of left ventricular impairment in chronic cor pulmonale. Chest109:1446-1451, 1996.

    Article  CAS  PubMed  Google Scholar 

  49. Sime F, Penaloza D and Ruiz L. Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level. Br Heart J33:647- 657, 1971.

    Article  CAS  PubMed  Google Scholar 

  50. Suarez J, Alexander JK and Houston CS. Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol60:137-142, 1987.

    Article  CAS  PubMed  Google Scholar 

  51. Thompson CR, Kingma I, MacDonald RP, Belenkie I, Tyberg JV and Smith ER. Transseptal pressure gradient and diastolic ventricular septal motion in patients with mitral stenosis. Circulation76:974-980, 1987.

    CAS  PubMed  Google Scholar 

  52. Vernooy K, Verbeek XA, Peschar M, Crijns HJ, Arts T, Cornelussen RN and Prinzen FW. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J26:91-98, 2005.

    Article  PubMed  Google Scholar 

  53. Vizza CD, Lynch JP, Ochoa LL, Richardson G and Trulock EP. Right and left ventricular dysfunction in patients with severe pulmonary disease. Chest113:576- 583, 1998.

    Article  CAS  PubMed  Google Scholar 

  54. Wagner PD. Reduced maximal cardiac output at altitude–mechanisms and significance. Respir Physiol120:1-11, 2000.

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe J, Levine MJ, Bellotto F, Johnson RG and Grossman W. Effects of coronary venous pressure on left ventricular diastolic distensibility. Circ Res67:923-932, 1990.

    CAS  PubMed  Google Scholar 

  56. Wolfel EE, Selland MA, Cymerman A, Brooks GA, Butterfield GE, Mazzeo RS, Grover RF and Reeves JT. O2 extraction maintains O2 uptake during submaximal exercise with beta-adrenergic blockade at 4,300 m. J Appl Physiol85:1092-1102, 1998.

    CAS  PubMed  Google Scholar 

  57. Zhao L, Mason NA, Morrell NW, Kojonazarov B, Sadykov A, Maripov A, Mirrakhimov MM, Aldashev A and Wilkins MR. Sildenafil inhibits hypoxia-induced pulmonary hypertension. Circulation104:424-428, 2001.

    Article  CAS  PubMed  Google Scholar 

  58. Zhuang J, Droma T, Sutton JR, McCullough RE, McCullough RG, Groves BM, Rapmund G, Janes C, Sun S and Moore LG. Autonomic regulation of heart rate response to exercise in Tibetan and Han residents of Lhasa (3,658 m). J Appl Physiol 75:1968-1973, 1993.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gibbs, J.S.R. (2007). Biventricular Function at High Altitude: Implications for Regulation of Stroke Volume in Chronic Hypoxia. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia and the Circulation. Advances in Experimental Medicine and Biology, vol 618. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75434-5_2

Download citation

Publish with us

Policies and ethics