Skip to main content

Cowpea, a Multifunctional Legume

  • Chapter

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Cowpea [Vigna unguiculata (L.) Walp.] is an important warm-season legume grown primarily in the semi-arid tropics. The majority of cowpea is grown by subsistence farmers in west and central sub-Saharan Africa, where its grain and stover are highly valued for food and forage. Despite its economic and social importance in developing parts of the world, cowpea has received relatively little attention from a research standpoint. To a large extent it is an underexploited crop where relatively large genetic gains can likely be made with only modest investments in both applied plant breeding and molecular genetics. A major goal of many cowpea breeding and improvement programs is combining resistance to numerous pests and diseases and other desirable traits, such as those governing maturity, photoperiod sensitivity, plant type, and seed quality. New opportunities for improving cowpea exist by leveraging the emerging genomic tools and knowledge gained through research on other major legume crops and model species. The use of marker-assisted selection and other molecular breeding systems for tracking single gene traits and quantitatively inherited characteristics will likely increase the overall efficiency and effectiveness of cowpea improvement programs in the foreseeable future and provide new opportunities for development of cowpea as a food staple and economic resource.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahenkora K, Adu-Dapaah HK, Agyemang A (1998) Selected nutritional components and sensory attributes of cowpea (Vigna unguiculata [L.] Walp.) leaves. Plant Foods Hum Nutr 52:221–229

    Article  PubMed  CAS  Google Scholar 

  • Ajibade SR, Weeden NF, Chite SM (2000) Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55

    Article  CAS  Google Scholar 

  • Amirhusin B, Shade RE, Koiwa H, Hasegawa PM, Bressan RA, et al. (2004) Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil. J Econ Entomol 97:2095–2100

    Google Scholar 

  • Anand RP, Ganapathi A, Vengadesan G, Selvaraj N, Anbazhagan VR, et al. (2001) Plant regeneration from immature cotyledon-derived callus of Vigna unguiculata (L). Walp (cowpea). Curr Sci 80:671–674

    CAS  Google Scholar 

  • Avenido RA, Dimaculangan JG, Welgas JN, Del Rosario EE (2004) Plant regeneration via direct shoot organogenesis from cotyledons and cotyledonary node explants of pole sitao (Vigna unguiculata [L] Walp. var sesquipedalis [L.] Koern.). Philippine Agric Sci 87:457–462

    Google Scholar 

  • Ba FS, Pasquet RE, Gepts P (2004) Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genet Resource Crop Evol 51:539–550

    Article  CAS  Google Scholar 

  • Barone A, del Guidice A, Ng NQ (1992) Barriers to interspecific hybridization in V. unguiculata and V. vexillata. Sexual Plant Reproduction 5:195–200

    Article  Google Scholar 

  • Baudoin JP, Maréchal R (1985) Genetic diversity in Vigna. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 3–9

    Google Scholar 

  • Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, et al. (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:e13

    Google Scholar 

  • Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500

    Article  PubMed  CAS  Google Scholar 

  • Botanga CJ and Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49: 1351–1365

    Google Scholar 

  • Boukar O, Kong L, Singh BB, Murdock L, Ohm HW (2004) AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44:1259–1264

    Article  CAS  Google Scholar 

  • Boutin SR, Young ND, Olson TC, Yu ZH, Shoemaker RC, et al. (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937

    Article  CAS  PubMed  Google Scholar 

  • Bressani R (1985) Nutritive value of cowpea. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 353–359

    Google Scholar 

  • Carsky RJ, Vanlauwe B, Lyasse O (2002) Cowpea rotation as a resource management technology for cereal-based systems in the savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp. 252–266

    Google Scholar 

  • Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94

    Article  CAS  Google Scholar 

  • Chen X Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinformatics 8:129.

    Article  CAS  Google Scholar 

  • Chida Y, Okazaki K, Karasawa A, Akashi K, Nakazawa-Nasu Y, et al. (2000) Isolation of molecular markers linked to the Cry locus conferring resistance to cucumber mosaic cucumovirus infection in cowpea. J Gen Plant Pathol 66:242–250

    Article  CAS  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:258–266

    Article  Google Scholar 

  • Craufurd PQ, Summerfield RJ, Ell RH, Roberts EH (1997) Photoperiod, temperature and the growth and development of cowpea (Vigna unguiculata). In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 75–86

    Google Scholar 

  • Daoust RA, Roberts DW, Das Neves BP (1985) Distribution, biology and control of cowpea pests in Latin America. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 249–264

    Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Dreher K, Khairallah M, Ribaut JM, Morris M (2003) Money matters. (I) Costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  • Dubcovsky J (2004) Marker-assisted selection in public breeding programs: the wheat experience. Crop Sci 44:1895–1898

    Article  Google Scholar 

  • Duivenbooden Van H, Abdoussalam S, Mohamed AB (2002) Impact of climate change on agricultural production in the Sahel-Part 2. Case study for groundnut and cowpea in Niger. Climate Change 54:349–368

    Article  Google Scholar 

  • Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679

    Article  Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp). Field Crops Res 53:187–204

    Article  Google Scholar 

  • Ehlers JD, Fery RL, Hall AE (2002a) Cowpea breeding in the USA: new varieties and improved germplasm. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp 62–77

    Google Scholar 

  • Ehlers JD, Matthews WC, Hall AE, Roberts PA (2002b) Breeding and evaluation of cowpeas with high levels of broad-based resistance to root-knot nematodes. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 41–51

    Google Scholar 

  • Elawad HOA, Hall AE (1987) Influences of early and late nitrogen fertilization on yield and nitrogen fixation of cowpea under well-watered and dry field conditions. Field Crops Res 15:229–244

    Article  Google Scholar 

  • Fatokun CA, Singh BB (1987) Interspecific hybridization between V. pubescence and V. unguiculata through embryo rescue. Plant Cell Tissue Organ Cult 9:229–233

    Article  Google Scholar 

  • Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologus seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132: 841–846

    PubMed  CAS  Google Scholar 

  • Fatokun CA, Danesh D, Young ND, Stewart EL (1993a) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104

    Article  CAS  Google Scholar 

  • Fatokun CA, Danesh D, Menancio-Hautea D, Young ND (1993b) A linkage map for cowpea [Vigna unguiculata (L.) Walp.] based on DNA markers. In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 6.256–6.258

    Google Scholar 

  • Federoff NV (1989) About maize transposable elements and development. Cell 56:181–191

    Google Scholar 

  • Feleke Y, Pasquet RS, Gepts P (2006) Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp unguiculata var unguicalata) and highlight its crop-weed complex. Plant Syst Evol 262:75–87

    Article  CAS  Google Scholar 

  • Fery RL (1985) The genetics of cowpea: a review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 25–62

    Google Scholar 

  • Fery RL (1990) The cowpea: production, utilization, and research in the United States. Hort Rev 12:197–222

    Google Scholar 

  • Fery RL (2002) New opportunities in Vigna. In: Janick J, Whipkey A (eds) Trends in New Crops and New Uses. ASHS, Alexandria, VA, pp. 424–428.

    Google Scholar 

  • Flavell AJ, Pearce S, Kumar A (1994) Plant transposable elements and the genome. Curr Opin Genet Dev 4:838–844

    Article  PubMed  CAS  Google Scholar 

  • Galasso I, Harrison GE, Pignone D, Brandes A, Heslop-Harrison JS (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp. (cowpea) and its relatives. Ann Bot 80:327–333

    Article  CAS  Google Scholar 

  • Garcia JA, Hillie J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46

    Article  CAS  Google Scholar 

  • Garcia JA, Hillie J, Goldbach R (1987) Transformation of cowpea Vigna unguiculata cells with a full length DNA copy of cowpea mosaic virus m-RNA. Plant Sci 44:89–98

    Article  Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for Food nd Feed Report of the Cross-Legume Advances through Genomics Conference. Plant Physiol 137: 1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Gomathinayagam P, Ram SG, Rathnaswanmy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.). Walp and V. vexillata (L.). A. Rich, through in vitro embryo culture. Euphytica 102:203–209

    Article  Google Scholar 

  • Gowda BS, Miller JL, Rubin SS, Sharma DR, Timko MP (2002) Isolation, sequence analysis, and linkage mapping of resistance-gene analogs in cowpea (Vigna unguiculata L. Walp.). Euphytica 126:365–377

    Article  CAS  Google Scholar 

  • Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454

    Article  Google Scholar 

  • Hall AE, Patel PN (1985) Breeding for resistance to drought and heat. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 137–151

    Google Scholar 

  • Hall AE, Singh BB, Ehlers JD (1997) Cowpea breeding. Plant Breed Rev 15:215–274

    Google Scholar 

  • Hall AE, Ismail AM, Ehlers JD, Marfo KO, Cisse N, et al. (2002) Breeding cowpeas for tolerance to temperature extremes and adaptation to drought. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 14–21

    Google Scholar 

  • Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, et al. (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crops Res 82:103–134

    Article  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218

    CAS  Google Scholar 

  • Kaga A, Tomooka N, Egawa Y, Hosaka K, Kamijima O (1996a) Species relationships in the subgenus Ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica 88:17–24

    Article  CAS  Google Scholar 

  • Kaga A, Ohnishi M, Ishii T, Kamijima O (1996b) A genetic linkage map of azuki bean constructed with molecular and morphological markers using an interspecific population (Vigna angularis xV. nakashimae). Theor Appl Genet 93:658–663

    Article  CAS  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Koona P, Osisanya EO, Jackai LEN, Tamo M, Markham RH (2002) Resistance in accessions of cowpea to the Coreid Pod-Bug Clavigralla tomentosicollis (Hemiptera: Coreidae). J Econ Entomol 95:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Kwapata MB, Hall AE (1985) Effects of moisture regieme and phosphorus on mycorrhizal infection, nutrient uptake, and growth of cowpeas [Vigna unguiculata (L.) Walp.]. Field Crops Res 12:241–250

    Article  Google Scholar 

  • Lale NES, Kolo AA (2007) Susceptibility of eight genetically improved local cultivars of cowpea to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Nigeria. Intl J Pest Management 44:25–27

    Google Scholar 

  • Lane JA, Moore THM, Child DV, Cardwell KF (1996) Characterization of virulence and geographic distribution of Striga gesnerioides on cowpea in West Africa. Plant Dis 80:299–301

    Article  Google Scholar 

  • Lane JA, Child DV, Reiss GC, Entcheva V, Bailey JA (1997) Crop resistance to parasitic plants. In: Crute IR, et al. (eds) The Gene-for-Gene Relationship in Plant-Parasite Interactions. CAB, Wallingford, UK, pp. 81–97

    Google Scholar 

  • Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lamber D, Ibro G, et al. (2003) Cowpea supply and demand in West Africa. Field Crops Res 82:215–231

    Article  Google Scholar 

  • Li J, He G, Gepts P, Prakash CS (1999) Development of a genetic map for cowpea (Vigna unguiculata) using DNA markers. Plant & Animal Genome Conf VII:P327

    Google Scholar 

  • Machuka J (2002) Potential role of transgenic approaches in the control of cowpea insect pests. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 213–232

    Google Scholar 

  • Machuka J, Adesoye A, Obembe OO (2002) Regeneration and genetic transformation in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 185–196

    Google Scholar 

  • Maréchal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d’un group complexe d’especes des genres Phaseolus et Vigna (Papillionaceae) sur la base de donnees morphologiques et polliniques traitees par lánalyse informatique. Boissiera 28:1–273

    Google Scholar 

  • Matsui T and Singh BB (2003) Root characteristics in cowpea realted to drought tolerance at the seedling stage. Experimental Agriculture 39:29–38

    Article  Google Scholar 

  • Menancio-Hautea D, Kumar L, Danesh D, Young ND (1993a) A genome map for mungbean [Vigna radiata (L.) Wilczek] based on DNA genetic markers (2N=2X=22). In: O’Brien JS (ed) A compilation of linkage and restriction maps of genetically studied organisms, Genetic maps 1992, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 6.259–6.261

    Google Scholar 

  • Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993b) Comparative genome analysis of mung bean (Vigna radiata L. Wilczek) and cowpea (V unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 86:797–810

    Article  CAS  Google Scholar 

  • Menéndez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217

    Article  Google Scholar 

  • Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337

    Article  Google Scholar 

  • Muthukumar B, Mariamma M, Gnanam A (1995) Regeneration of plants from primary leaves of cowpea. Plant Cell Tissue Organ Cult 42:153–155

    Article  Google Scholar 

  • Myers GO, Fatokun CA, Young ND (1996) RFLP mapping of an aphid resistance gene in cowpea (Vigna unguiculata L. Walp.). Euphytica 91:181–187

    CAS  Google Scholar 

  • Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, et al. (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44

    Article  Google Scholar 

  • Ng NQ (1995) Cowpea. In: Smart J, Simonds NW (eds) Evolution of Crop Plants (2mathrm nd Edition), Longman, London, UK, pp. 326–332

    Google Scholar 

  • Ng NQ, Marechal R (1985) Cowpea taxonomy, origin and germplasm. In: Singh SR, Rachie KO (eds) Cowpea Research, Production and Utilization. John Wiley and Sons, Ltd., Chichester, NY, pp. 11–21

    Google Scholar 

  • Ng NQ, Padulosi S (1988) Cowpea genepool distribution and crop improvement. In: Ng NQ, Perrino P, Attere F, Zedan H (eds.), Crop Genetic Resources of Africa, Vol II. IBPGR, Rome, pp. 161–174

    Google Scholar 

  • Nielson SS, Brandt WE, Singh BB (1993) Genetic variability for nutritional composition and cooking time of improved cowpea lines. Crop Sci 33:469–472

    Article  Google Scholar 

  • Nielson SS, Ohler TA, Mitchell CA (1997) Cowpea leaves for human consumption: production, utilization, and nutrient composition. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 326–332

    Google Scholar 

  • Ogundiwin EA, Fatokun CA, Thottappilly G, Akenóva ME, Pillay M (2000) Genetic linkage map of Vigna vexillata based on DNA markers and its potential usefulness in cowpea improvement. (abstr) World Cowpea Res Conf III, p. 19

    Google Scholar 

  • Ogundiwin EA, Thottappilly G, Akenóva ME, Ekpo EJA, Fatokun CA (2002) Resistance to cowpea mottle carmovirus in Vigna vexillata. Plant Breed 121:517–520

    Article  Google Scholar 

  • Ogundiwin EA, Thottappilly G, Akenóva ME, Pillay M, Fatokun CA (2005) A genetic linkage map for Vigna vexillata. Plant Breed 124:392–398

    Article  CAS  Google Scholar 

  • Ouédraogo JT, Maheshwari V, Berner D, St-Pierre C-A, Belzile F, et al. (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036

    Article  Google Scholar 

  • Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, et al.(2002a) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers and biological resistance traits. Genome 45:175–188

    Article  Google Scholar 

  • Ouédraogo JT, Tignegre J-B, Timko MP, Belzile FJ (2002b) AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793

    Article  Google Scholar 

  • Padulosi S (1987) Plant exporation and germplsam collection in Zimbabwe. IITA Genetic Resources Unit Exploration Report. IITA, Ibadan, Nigeria

    Google Scholar 

  • Padulosi S (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (V. unguicullata). Ph.D. Thesis. University Catholique Lovain-la-Neuve, Belgique

    Google Scholar 

  • Padulosi S, Ng NQ (1997) Origin, taxonomy, and morphology of Vigna unguiculata (L.) Walp. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 1–12

    Google Scholar 

  • Padulosi S, Laghetti G, Ng NQ, Perrino P (1990) Collecting in Swaziland and Zimbabwe. FAO/IBPGR Plant Genetic Resources Newsl 78/79, pp. 38

    Google Scholar 

  • Padulosi S, Laghetti G, Pienaar B, Ng NQ, Perrino P (1991) Survey of wild Vigna in southern Africa. FAO/IBPGR Plant Genetic Resources Newsl 83/84, pp. 4–8

    Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, et. al. (2003) Maize genome sequencing by methylation filteration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Pant KC, Chandel KPS, Joshi BS (1982) Analysis of diversity in Indian cowpea genetic resources. SABRO J 14:103–111

    Google Scholar 

  • Pasquet RS (1999) Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor Appl Genet 98:1104–1119

    Article  CAS  Google Scholar 

  • Pasquet RS, Baudoin J-P (2001) Cowpea. In: Charrier A, Jacquot M, Harmon S, Nicolas D (eds) Tropical Plant Breeding, Science Publishers, Enfield. pp. 177–198

    Google Scholar 

  • Phillips RD, McWatters KH, Chinannan MS, Hung Y, Beuchat LR, et al. (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213

    Article  Google Scholar 

  • Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculataWalp). J Plant Physiol 138:39–43

    CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJ (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    Article  PubMed  CAS  Google Scholar 

  • Purseglove JW (1968) Tropical Crops - Dicotyledons. Longman, London, UK

    Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, et al. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics 23:305–308

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, et al. (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Rangel A, Saraiva K, Schwengber P, Narciso MS, Domont GB, et al. (2004) Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chem 87:491–499

    Article  CAS  Google Scholar 

  • Roberts PA, Matthews WC, Ehlers JD (1996) New resistance to virulent root-know nematodes linked to the Rk locus of cowpea. Crop Sci 36:889–894

    Article  Google Scholar 

  • Roberts PA, Ehlers JD, Hall AE, Matthews WC (1997) Characterization of new resistance to root-knot nematodes in cowpea. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 207–214

    Google Scholar 

  • Sanginga N, Dashiell KE, Diels J, Vanlauwe B, Lyasse O, et al. (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain–legume–livestock systems in the dry savanna. Agric Ecosyst Environ 100:305–314

    Article  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 3–13

    Google Scholar 

  • Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp. In: Singh RJ, Jauhar PP (eds) Genetic Resources, Chromosome Engineering and Crop Improvement. Volume 1, CRC Press, Boca Raton, FL, USA, pp. 117–162

    Google Scholar 

  • Singh BB, Tarawali SA (1997) Cowpea and its improvement: key to sustainable mixed crop/livestock farming systems in West Africa. In: Renard C (ed) Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems, CAB in Association with ICRISAT and ILRI, Wallingford, UK, pp. 79–100

    Google Scholar 

  • Singh BB, Ehlers JD, Sharma B, Freire Filho FR (2002) Recent progress in cowpea breeding. In: : Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 22–40

    Google Scholar 

  • Singh S, Kundu SS, Negi AS, Singh PN (2006) Cowpea (Vigna unguiculata) legume grains as protein source in the ration of growing sheep. Small Ruminant Res 64:247–254

    Article  Google Scholar 

  • Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Article  Google Scholar 

  • Sonnante G, Piergiovanni AR Ng NQ, Perrino P (1996) Relationships of Vigna unguiculata (L.) Walp., V. vexillata (L.) A. Rich., and species of section Vigna based on isozyme variation. Genet. Resource Crop Evol 43:157–165

    Article  Google Scholar 

  • Steele WM (1976) Cowpea, Vigna unguiculata (Leguminosae-Papillionatae). In: Simmonds NW (ed) Evolution of Crop Plants., Longman, London, pp. 183–185

    Google Scholar 

  • Steele WM, Mehra KL (1980) Structure, evolution and adaptation to farming systems and environments in Vigna. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp. 393–404

    Google Scholar 

  • Tarawali SA, Singh BB, Peters M, Blade SF (1997) Cowpea haulms as fodder. In: Singh BB, Mohan Raj DR, Dashiell KE, Jackai LEN (eds) Advances in Cowpea Research. Copublication Intl Inst Tropical Agric (IITA) and Japan Intl Res Center Agric Sci (JIRCAS). Sayce, Devon, UK, pp. 313–325

    Google Scholar 

  • Tarawali SA, Singh BB, Gupta SC, Tabo R, Harris F, et al. (2002) Cowpea as a key factor for a new approach to integrated crop–livestock systems research in the dry savannas of West Africa. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, M Tamo (eds) Challenges and Opportunities for Enhancing Sustainable Cowpea Production. Intl Inst Tropical Agric, Ibadan, Nigeria, pp. 233–251

    Google Scholar 

  • Thottappilly G, Ng NQ, Rossel HW (1994) Screening germplasm of Vigna vexillata for resistance to cowpea mottle carmovirus. Int J Trop Plant Dis 12:75–80

    Google Scholar 

  • Timko MP, Ehlers JD, Roberts PA (2007a) Cowpea. In: Kole C (ed) Genome Mapping and Molecular Breeding in Plants, Volume 3, Pulses, Sugar and Tuber Crops, Springer Verlag, Berlin Heidelberg. pp. 49–67

    Google Scholar 

  • Timko MP, Gowda BS, Ouedraogo J, Ousmane B (2007b) Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. In: Ejeta G, Gressell J (eds) Integrating New Technologies for Striga Control: Towards Ending the Witch-hunt, World Scientific Publishing Co. Pte Ltd, .Singapore, pp. In Press

    Google Scholar 

  • Tosti N, Negri V (2002) Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna unguiculata ssp. unguiculata) landraces. Genome 45:656–660

    Article  Google Scholar 

  • Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 50:161–172

    CAS  Google Scholar 

  • Vaillancourt RE, Weeden NF (1992) Chloroplast DNA polymorphism suggests a Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am J Bot 79: 1194–1199

    Article  CAS  Google Scholar 

  • Vaillancourt RE, Weeden NF (1996) Vigna unguiculata and its position within the genus Vigna. In: Pickersgill B, Lock JM (eds) Advances in Legume Systematics, 8: Legumes of Economic Importance. Royal Botanic Gardens, Kew, UK, pp. 89–93

    Google Scholar 

  • Vaillancourt RE, Weeden NF, Barnard JD (1993) Isozyme diversity in the cowpea species complex. Crop Sci 33:606–613

    Article  CAS  Google Scholar 

  • Van Boxtel J, Singh BB, Thottappilly G, Maule AJ (2000) Resistance of (Vigna unguiculata (L.) Walp.) breeding lines to blackeye cowpea mosaic and cowpea aphid borne mosaic potyvirus isolates under experimental conditions. J Plant Dis Protect 107:197–204

    Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131: 840–865

    Article  CAS  Google Scholar 

  • Van Le B, de Carvalho MHC, Zully-Fodil Y, Thi ATP, Van KTT (2002) Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin layer explants. J Plant Physiol 159:1255–1258

    Article  Google Scholar 

  • Verdcourt B (1970) Studies of the Leguminosae-Papilionoideae for ‘Flora of Tropical East Africa’: IV. Kew Bull pp. 507–569

    Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung, F., et al. (2003) Enrichment of gene-coding sequences in maize by geneome filteration. Science 302:2118–2120

    Google Scholar 

  • Wein HC, Summerfield RJ (1980) Adaptation of cowpeas in West Africa: Effects of photoperiod and temperature responses in cultivars of diverse origin. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Science. Royal Botanic Gardens, Kew, UK, pp. 405–417

    Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Shoemaker RC, Cook DR, Young ND (2004) Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome 47:141–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Timko, M.P., Singh, B. (2008). Cowpea, a Multifunctional Legume. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_10

Download citation

Publish with us

Policies and ethics