Skip to main content

Targeted Therapeutic Approaches for AML

  • Chapter
  • First Online:
Book cover Molecularly Targeted Therapy for Childhood Cancer
  • 597 Accesses

Abstract

Acute myeloid leukemia comprises about 20% of the acute leukemias in children, but it is responsible for more than half of leukemic deaths due to leukemia. Compared to the tremendous success in the treatment of acute lymphocytic leukemia in the last three decades, resulting in more than 80% cure rate, improvements in AML therapy have been more limited with only about half of patients with AML being cured. Risk-adapted therapy has been the cornerstone of ALL therapy. One of the reasons for the success of this approach in ALL is that standard ALL induction and consolidation have been able to be intensified without causing significant morbidity and mortality. In contrast, the leukemic stem cell in most AML subtypes is inherently more drug resistant requiring significantly intensified courses of near myeloablative combinations of chemotherapeutic agents. This has resulted in a plateau in survival at approximately 50% along with significant morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ichikawa H, Tanabe K, Mizushima H, et al. Common gene expression signatures in t(8;21)- and inv(16)-acute myeloid leukaemia. Br J Haematol. 2006;135:336–347.

    PubMed  CAS  Google Scholar 

  • Jordan CT. The leukemic stem cell. Best Pract Res Clin Haematol. 2007;20:13–18.

    PubMed  CAS  Google Scholar 

  • Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–604.

    PubMed  CAS  Google Scholar 

  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–743.

    PubMed  CAS  Google Scholar 

  • Andersson A, Eden P, Lindgren D, et al. Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations. Leukemia. 2005;19:1042–1050.

    PubMed  CAS  Google Scholar 

  • Andersson A, Olofsson T, Lindgren D, et al. Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations. Proc Natl Acad Sci U S A. 2005;102:19069–19074.

    PubMed  CAS  Google Scholar 

  • Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104:3679–3687.

    PubMed  CAS  Google Scholar 

  • Oshima Y, Ueda M, Yamashita Y, et al. DNA microarray analysis of hematopoietic stem cell-like fractions from individuals with the M2 subtype of acute myeloid leukemia. Leukemia. 2003;17:1990–1997.

    PubMed  CAS  Google Scholar 

  • Kiyoi H, Naoe T, Yokota S, et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia. 1997;11:1447–1452.

    CAS  Google Scholar 

  • Kiyoi H, Towatari M, Yokota S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia. 1998;12:1333–1337.

    PubMed  CAS  Google Scholar 

  • Meshinchi S, Alonzo TA, Gerbing R, Lange B, Radich JP. FLT3 internal tandem duplication is a prognostic factor for poor outcome in pediatric AML; a CCG-1961 study [abstract]. Blood. 2003;102:335a.

    Google Scholar 

  • Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kiyoi H, Nakano Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97:2434–2439.

    PubMed  CAS  Google Scholar 

  • Schnittger S, Bacher U, Haferlach C, Kern W, Haferlach T. Rare CBFB-MYH11 fusion transcripts in AML with inv(16)/t(16;16) are associated with therapy-related AML M4eo, atypical cytomorphology, atypical immunophenotype, atypical additional chromosomal rearrangements and low white blood cell count: a study on 162 patients. Leukemia. 2007;21:725–731.

    PubMed  CAS  Google Scholar 

  • Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107:1791–1799.

    PubMed  CAS  Google Scholar 

  • Shimada A, Taki T, Tabuchi K, et al. KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood. 2006;107:1806–1809.

    PubMed  CAS  Google Scholar 

  • Tse KF, Mukherjee G, Small D. Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia. 2000;14:1766–1776.

    PubMed  CAS  Google Scholar 

  • Ning ZQ, Li J, Arceci RJ. Activating mutations of c-kit at codon 816 confer drug resistance in human leukemia cells. Leuk Lymphoma. 2001;41:513–522.

    PubMed  CAS  Google Scholar 

  • Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp(816) mutant c-Kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood. 2001;97:3559–3567.

    PubMed  CAS  Google Scholar 

  • Ning ZQ, Li J, McGuinness M, Arceci RJ. STAT3 activation is required for Asp(816) mutant c-Kit induced tumorigenicity. Oncogene. 2001;20:4528–4536.

    PubMed  CAS  Google Scholar 

  • Levis M, Murphy KM, Pham R, et al. Internal tandem duplications of the FLT3 gene are present in leukemia stem cells. Blood. 2005;106:673–680.

    PubMed  CAS  Google Scholar 

  • Pollard JA, Alonzo TA, Gerbing RB, et al. FLT3 internal tandem duplication in CD34+/CD33− precursors predicts poor outcome in acute myeloid leukemia. Blood. 2006;108:2764–2769.

    PubMed  CAS  Google Scholar 

  • Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100:2393–2398.

    PubMed  CAS  Google Scholar 

  • Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20:1217–1220.

    PubMed  CAS  Google Scholar 

  • Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia. 2006;20:1368–1376.

    PubMed  CAS  Google Scholar 

  • Levis M, Allebach J, Tse KF, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99:3885–3891.

    PubMed  CAS  Google Scholar 

  • Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004;104:1145–1150.

    PubMed  CAS  Google Scholar 

  • Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103:3669–3676.

    PubMed  CAS  Google Scholar 

  • DeAngelo DJ, Stone RM, Heaney ML, et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006;108:3674–3681.

    PubMed  CAS  Google Scholar 

  • Cools J, Stover EH, Boulton CL, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell. 2003;3:459–469.

    PubMed  CAS  Google Scholar 

  • Stone RM, DeAngelo DJ, Klimek V, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105:54–60.

    PubMed  CAS  Google Scholar 

  • Levis M, Brown P, Smith BD, et al. Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006;108:3477–3483.

    PubMed  CAS  Google Scholar 

  • Knapper S, Burnett AK, Littlewood T, et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006;108:3262–3270.

    PubMed  CAS  Google Scholar 

  • Levis M, Smith BD, Beran M, et al. A randomized, open-label study of lestaurtinib (CEP-701), an oral FLT3 inhibitor, administered in sequence with chemotherapy in patients with relapsed AML harboring FLT3 activating mutations: clinical response correlates with successful FLT3 inhibition. Blood. 2005;106:403a.

    Google Scholar 

  • Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30:41–47.

    PubMed  CAS  Google Scholar 

  • Roberts KG, Odell AF, Byrnes EM, et al. Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Mol Cancer Ther. 2007;6:1159–1166.

    PubMed  CAS  Google Scholar 

  • Meshinchi S, Stirewalt DL, Alonzo TA, et al. Activating mutations of RTK/RAS signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003;102:1474–1479.

    PubMed  CAS  Google Scholar 

  • Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–932.

    PubMed  CAS  Google Scholar 

  • Fernandez A, Sanguino A, Peng Z, et al. An anticancer c-kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest. 2007;117:4044–4054.

    PubMed  CAS  Google Scholar 

  • Kindler T, Breitenbuecher F, Marx A, et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood. 2004;103:3644–3654.

    PubMed  CAS  Google Scholar 

  • Ito K, Tominaga K, Suzuki T, Jinnai I, Bessho M. Successful treatment with imatinib mesylate in a case of minor BCR–ABL-positive acute myelogenous leukemia. Int J Hematol. 2005;81:242–245.

    PubMed  Google Scholar 

  • Jentsch-Ullrich K, Pelz AF, Braun H, et al. Complete molecular remission in a patient with Philadelphia-chromosome positive acute myeloid leukemia after conventional therapy and imatinib. Haematologica. 2004;89:ECR15.

    Google Scholar 

  • Pompetti F, Spadano A, Sau A, et al. Long-term remission in BCR/ABL-positive AML-M6 patient treated with imatinib mesylate. Leuk Res. 2007;31:563–567.

    PubMed  CAS  Google Scholar 

  • Heidel F, Cortes J, Rucker FG, et al. Results of a multicenter phase II trial for older patients with c-kit-positive acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS) using low-dose Ara-C and imatinib. Cancer. 2007;109:907–914.

    PubMed  CAS  Google Scholar 

  • Hizuka N, Sukegawa I, Takano K, et al. Characterization of insulin-like growth factor I receptors on human erythroleukemia cell line (K-562 cells). Endocrinol Jpn. 1987;34:81–88.

    PubMed  CAS  Google Scholar 

  • Abe S, Funato T, Takahashi S, et al. Increased expression of insulin-like growth factor i is associated with Ara-C resistance in leukemia. Tohoku J Exp Med. 2006;209:217–228.

    PubMed  CAS  Google Scholar 

  • Frostad S, Bruserud O. In vitro effects of insulin-like growth factor-1 (IGF-1) on proliferation and constitutive cytokine secretion by acute myelogenous leukemia blasts. Eur J Haematol. 1999;62:191–198.

    PubMed  CAS  Google Scholar 

  • Cosaceanu D, Carapancea M, Alexandru O, et al. Comparison of three approaches for inhibiting insulin-like growth factor I receptor and their effects on NSCLC cell lines in vitro. Growth Factors. 2007;25:1–8.

    PubMed  CAS  Google Scholar 

  • Jerome L, Alami N, Belanger S, et al. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2-overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res. 2006;66:7245–7252.

    PubMed  CAS  Google Scholar 

  • Perl AE, Carroll M. Exploiting signal transduction pathways in acute myelogenous leukemia. Curr Treat Options Oncol. 2007;8:265–276.

    PubMed  Google Scholar 

  • Aguayo A. The role of angiogenesis in the biology and therapy of myelodysplastic syndromes. Curr Hematol Rep. 2004;3:184–191.

    PubMed  Google Scholar 

  • Aguayo A, Estey E, Kantarjian H, et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood. 1999;94:3717–3721.

    PubMed  CAS  Google Scholar 

  • Aguayo A, Giles F, Albitar M. Vascularity, angiogenesis and angiogenic factors in leukemias and myelodysplastic syndromes. Leuk Lymphoma. 2003;44:213–222.

    PubMed  CAS  Google Scholar 

  • Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood. 2000;95:309–313.

    PubMed  CAS  Google Scholar 

  • Kessler T, Fehrmann F, Bieker R, Berdel WE, Mesters RM. Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets. 2007;8:257–268.

    PubMed  CAS  Google Scholar 

  • Schuch G, Machluf M, Bartsch G, Jr., et al. In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo. Blood. 2002;100:4622–4628.

    PubMed  CAS  Google Scholar 

  • Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002;99:2179–2184.

    PubMed  CAS  Google Scholar 

  • Liersch R, Schliemann C, Bieker R, et al. Expression of VEGF-C and its receptor VEGFR-3 in the bone marrow of patients with acute myeloid leukaemia. Leuk Res. 2008;32:954–961.

    PubMed  CAS  Google Scholar 

  • Karp JE, Gojo I, Pili R, et al. Targeting vascular endothelial growth factor for relapsed and ­refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res. 2004;10:3577–3585.

    PubMed  CAS  Google Scholar 

  • Fiedler W, Mesters R, Tinnefeld H, et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood. 2003;102:2763–2767.

    PubMed  CAS  Google Scholar 

  • Maris JM, Courtright J, Houghton PJ, et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50:581–587.

    PubMed  Google Scholar 

  • Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007;109:1643–1652.

    PubMed  CAS  Google Scholar 

  • Farr C, Gill R, Katz F, Gibbons B, Marshall CJ. Analysis of RAS gene mutations in childhood myeloid leukaemia. Br J Haematol. 1991;77:323–327.

    PubMed  CAS  Google Scholar 

  • Loh ML, Vattikuti S, Schubbert S, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103:2325–2331.

    PubMed  CAS  Google Scholar 

  • Karp JE. Farnesyl protein transferase inhibitors as targeted therapies for hematologic malignancies. Semin Hematol. 2001;38:16–23.

    PubMed  CAS  Google Scholar 

  • Karp JE. Farnesyl transferase inhibition in hematologic malignancies. J Natl Compr Canc Netw. 2005;3 Suppl 1:S37–S40.

    PubMed  Google Scholar 

  • Emanuel PD, Snyder RC, Wiley T, Gopurala B, Castleberry RP. Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood. 2000;95:639–645.

    PubMed  CAS  Google Scholar 

  • Gotlib J. Farnesyltransferase inhibitor therapy in acute myelogenous leukemia. Curr Hematol Rep. 2005;4:77–84.

    PubMed  CAS  Google Scholar 

  • Harousseau JL, Lancet JE, Reiffers J, et al. A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood. 2007;109:5151–5156.

    PubMed  CAS  Google Scholar 

  • Lancet JE, Gojo I, Gotlib J, et al. A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood. 2007;109:1387–1394.

    PubMed  CAS  Google Scholar 

  • Milella M, Estrov Z, Kornblau SM, et al. Synergistic induction of apoptosis by simultaneous disruption of the Bcl-2 and MEK/MAPK pathways in acute myelogenous leukemia. Blood. 2002;99:3461–3464.

    PubMed  CAS  Google Scholar 

  • Milella M, Kornblau SM, Andreeff M. The mitogen-activated protein kinase signaling module as a therapeutic target in hematologic malignancies. Rev Clin Exp Hematol. 2003;7:160–190.

    PubMed  CAS  Google Scholar 

  • Milella M, Kornblau SM, Estrov Z, et al. Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest. 2001;108:851–859.

    PubMed  CAS  Google Scholar 

  • James JA, Smith MA, Court EL, et al. An investigation of the effects of the MEK inhibitor U0126 on apoptosis in acute leukemia. Hematol J. 2003;4:427–432.

    PubMed  CAS  Google Scholar 

  • Tong FK, Chow S, Hedley D. Pharmacodynamic monitoring of BAY 43-9006 (Sorafenib) in phase I clinical trials involving solid tumor and AML/MDS patients, using flow cytometry to monitor activation of the ERK pathway in peripheral blood cells. Cytometry B Clin Cytom. 2006;70:107–114.

    PubMed  Google Scholar 

  • Weisberg E, Banerji L, Wright RD, et al. Potentiation of anti-leukemic therapies by the dual PI3K/PDK-1 inhibitor, BAG956: effects on BCR–ABL- and mutant FLT3-expressing cells. Blood. 2008.

    Google Scholar 

  • Tamburini J, Chapuis N, Bardet V, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008;111:379–382.

    PubMed  CAS  Google Scholar 

  • Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood. 2003;102:972–980.

    PubMed  CAS  Google Scholar 

  • Xu Q, Thompson JE, Carroll M. mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood. 2005;106:4261–4268.

    PubMed  CAS  Google Scholar 

  • Recher C, Beyne-Rauzy O, Demur C, et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood. 2005;105:2527–2534.

    PubMed  CAS  Google Scholar 

  • Min YH, Eom JI, Cheong JW, et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia. 2003;17:995–997.

    PubMed  CAS  Google Scholar 

  • Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006;12:5165–5173.

    PubMed  CAS  Google Scholar 

  • Baer MR, George SL, Dodge RK, et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood. 2002;100:1224–1232.

    PubMed  CAS  Google Scholar 

  • Leith CP, Chen IM, Kopecky KJ, et al. Correlation of multidrug resistance (MDR1) protein expression with functional dye/drug efflux in acute myeloid leukemia by multiparameter flow cytometry: identification of discordant MDR−/efflux+ and MDR1+/efflux− cases. Blood. 1995;86:2329–2342.

    PubMed  CAS  Google Scholar 

  • Leith CP, Kopecky KJ, Chen IM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood. 1999;94:1086–1099.

    PubMed  CAS  Google Scholar 

  • Willman CL. Immunophenotyping and cytogenetics in older adults with acute myeloid leukemia: significance of expression of the multidrug resistance gene-1 (MDR1). Leukemia. 1996;10 Suppl 1:S33–S35.

    PubMed  Google Scholar 

  • Willman CL. The prognostic significance of the expression and function of multidrug resistance transporter proteins in acute myeloid leukemia: studies of the Southwest Oncology Group Leukemia Research Program. Semin Hematol. 1997;34:25–33.

    PubMed  CAS  Google Scholar 

  • Sievers EL, Smith FO, Woods WG, et al. Cell surface expression of the multidrug resistance P-glycoprotein (P-170) as detected by monoclonal antibody MRK-16 in pediatric acute myeloid leukemia fails to define a poor prognostic group: a report from the Childrens Cancer Group. Leukemia. 1995;9:2042–2048.

    PubMed  CAS  Google Scholar 

  • List AF, Spier C, Greer J, et al. Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol. 1993;11:1652–1660.

    PubMed  CAS  Google Scholar 

  • Dahl GV, Lacayo NJ, Brophy N, et al. Mitoxantrone, etoposide, and cyclosporine therapy in pediatric patients with recurrent or refractory acute myeloid leukemia. J Clin Oncol. 2000;18:1867–1875.

    PubMed  CAS  Google Scholar 

  • Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol. 2004;22:1078–1086.

    PubMed  CAS  Google Scholar 

  • List AF, Kopecky KJ, Willman CL, et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood. 2001;98:3212–3220.

    PubMed  CAS  Google Scholar 

  • Becton D, Dahl GV, Ravindranath Y, et al. Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission: Pediatric Oncology Group Study 9421. Blood. 2006;107:1315–1324.

    PubMed  CAS  Google Scholar 

  • Arceci RJ, Sande J, Lange B, et al. Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia. Blood. 2005;106:1183–1188.

    PubMed  CAS  Google Scholar 

  • Linenberger ML, Hong T, Flowers D, et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood. 2001;98:988–994.

    PubMed  CAS  Google Scholar 

  • Marcucci G, Byrd JC, Dai G, et al. Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood. 2003;101:425–432.

    PubMed  CAS  Google Scholar 

  • Marcucci G, Stock W, Dai G, et al. Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol. 2005;23:3404–3411.

    PubMed  CAS  Google Scholar 

  • Moore J, Seiter K, Kolitz J, et al. A phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res. 2006;30:777–783.

    PubMed  CAS  Google Scholar 

  • Zavrski I, Jakob C, Kaiser M, Fleissner C, Heider U, Sezer O. Molecular and clinical aspects of proteasome inhibition in the treatment of cancer. Recent Results Cancer Res. 2007;176:165–176.

    PubMed  CAS  Google Scholar 

  • Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–2307.

    PubMed  CAS  Google Scholar 

  • Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A. 2002;99:16220–16225.

    PubMed  CAS  Google Scholar 

  • Guzman ML, Rossi RM, Neelakantan S, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood. 2007;110:4427–4435.

    PubMed  CAS  Google Scholar 

  • Pigneux A, Mahon FX, Moreau-Gaudry F, et al. Proteasome inhibition specifically sensitizes leukemic cells to anthracyclin-induced apoptosis through the accumulation of Bim and Bax pro-apoptotic proteins. Cancer Biol Ther. 2007;6:603–611.

    PubMed  CAS  Google Scholar 

  • Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    PubMed  Google Scholar 

  • Wood A, Schneider J, Shilatifard A. Cross-talking histones: implications for the regulation of gene expression and DNA repair. Biochem Cell Biol. 2005;83:460–467.

    PubMed  CAS  Google Scholar 

  • Nie Z, Yan Z, Chen EH, et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol. 2003;23:2942–2952.

    PubMed  CAS  Google Scholar 

  • Preisler HD, Li B, Chen H, et al. P15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia. 2001;15:1589–1595.

    PubMed  CAS  Google Scholar 

  • Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 1997;57:837–841.

    PubMed  CAS  Google Scholar 

  • Seedhouse CH, Das-Gupta EP, Russell NH. Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia. Leukemia. 2003;17:83–88.

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–681.

    PubMed  CAS  Google Scholar 

  • Ting AH, McGarvey KM, Baylin SB. The cancer epigenome – components and functional correlates. Genes Dev. 2006;20:3215–3231.

    PubMed  CAS  Google Scholar 

  • So CW, Karsunky H, Wong P, Weissman IL, Cleary ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 2004;103:3192–3199.

    PubMed  CAS  Google Scholar 

  • So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 2003;4:99–110.

    PubMed  CAS  Google Scholar 

  • Ghoshal K, Bai S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc). 2007;43:395–422.

    CAS  Google Scholar 

  • Santini V, Gozzini A, Ferrari G. Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab. 2007;8:383–393.

    PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Yang AS, Jagasia M. Evaluating new treatment options for MDS. Clin Adv Hematol Oncol. 2007;5:1–9

    Google Scholar 

  • Gattermann N, Kundgen A, Germing U. Treatment of patients with high-risk myelodysplastic syndromes. Cancer Treat Rev. 2007;33 Suppl 1:S64–S68.

    CAS  Google Scholar 

  • Plimack ER, Kantarjian HM, Issa JP. Decitabine and its role in the treatment of hematopoietic malignancies. Leuk Lymphoma. 2007;48:1472–1481.

    PubMed  CAS  Google Scholar 

  • Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist. 2005;10:176–182.

    PubMed  CAS  Google Scholar 

  • Silverman LR. Targeting hypomethylation of DNA to achieve cellular differentiation in myelodysplastic syndromes (MDS). Oncologist. 2001;6 Suppl 5:8–14.

    PubMed  CAS  Google Scholar 

  • Griffiths EA, Gore SD. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol. 2008;45:23–30.

    PubMed  CAS  Google Scholar 

  • Qin T, Youssef EM, Jelinek J, et al. Effect of cytarabine and decitabine in combination in human leukemic cell lines. Clin Cancer Res. 2007;13:4225–4232.

    PubMed  CAS  Google Scholar 

  • Gore SD, Baylin S, Sugar E, et al. Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66:6361–6369.

    PubMed  CAS  Google Scholar 

  • Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. 2006;108:3271–3279.

    PubMed  CAS  Google Scholar 

  • Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103:1635–1640.

    PubMed  CAS  Google Scholar 

  • Soriano AO, Yang H, Faderl S, et al. Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood. 2007;110:2302–2308.

    PubMed  CAS  Google Scholar 

  • Kantarjian HM, O’Brien S, Huang X, et al. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer. 2007;109:1133–1137.

    PubMed  CAS  Google Scholar 

  • Li Q, Kopecky KJ, Mohan A, et al. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin Cancer Res. 1999;5:1077–1084.

    PubMed  CAS  Google Scholar 

  • Larson RA, Sievers EL, Stadtmauer EA, et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer. 2005;104:1442–1452.

    PubMed  CAS  Google Scholar 

  • Aplenc R, Alonzo T, Gerbing A, Robert B, et al. Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia. J Clin Oncol. 2008;26:2390–3295.

    PubMed  CAS  Google Scholar 

  • Kell WJ, Burnett AK, Chopra R, et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood. 2003;102:4277–4283.

    PubMed  CAS  Google Scholar 

  • Burnett AK, Kell WJ, Goldstone AH, et al. The addition of gemtuzumab ozogamicin to induction chemotherapy for AML improves disease free survival without extra toxicity: preliminary analysis of 1115 patients in the MRC AML15 trial. Blood. 2006;108:8a.

    Google Scholar 

  • Taussig DC, Pearce DJ, Simpson C, et al. Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. Blood. 2005;106:4086–4092.

    PubMed  CAS  Google Scholar 

  • van Rhenen A, van Dongen GA, Kelder A, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110:2659–2666.

    PubMed  Google Scholar 

  • Arceci RJ. The potential for antitumor vaccination in acute myelogenous leukemia. J Mol Med. 1998;76:80–93.

    PubMed  CAS  Google Scholar 

  • Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM. Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood. 1998;91:222–230.

    PubMed  CAS  Google Scholar 

  • Dunussi-Joannopoulos K, Krenger W, Weinstein HJ, Ferrara JL, Croop JM. CD8+ T cells activated during the course of murine acute myelogenous leukemia elicit therapeutic responses to late B7 vaccines after cytoreductive treatment. Blood. 1997;89:2915–2924.

    PubMed  CAS  Google Scholar 

  • Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW, et al. Irradiated B7-1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood. 1996;87:2938–2946.

    PubMed  CAS  Google Scholar 

  • Cheuk AT, Guinn BA. Immunotherapy of acute myeloid leukaemia: development of a whole cell vaccine. Front Biosci. 2008;13:2022–2029.

    PubMed  CAS  Google Scholar 

  • Chan L, Hardwick N, Darling D, et al. IL-2/B7.1 (CD80) fusagene transduction of AML blasts by a self-inactivating lentiviral vector stimulates T cell responses in vitro: a strategy to generate whole cell vaccines for AML. Mol Ther. 2005;11:120–131.

    PubMed  CAS  Google Scholar 

  • Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology. 2006;211:677–685.

    PubMed  CAS  Google Scholar 

  • Greiner J, Li L, Ringhoffer M, et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood. 2005;106:938–945.

    PubMed  CAS  Google Scholar 

  • Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108:704–711.

    PubMed  CAS  Google Scholar 

  • Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia. Blood. 2000;96:1480–1489.

    PubMed  CAS  Google Scholar 

  • Greiner J, Dohner H, Schmitt M. Cancer vaccines for patients with acute myeloid leukemia – definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica. 2006;91:1653–1661.

    PubMed  CAS  Google Scholar 

  • Lange B, Smith FO, Feusner J, et al. Outcomes in CC-2961: a Children’s Cancer Group Phase 3 Trial for untreated pediatric acute myeloid leukemia (AML). Blood. 2008;111:1044–1053.

    PubMed  CAS  Google Scholar 

  • Arceci RJ, Cripe TP. Emerging cancer-targeted therapies. Pediatr Clin North Am. 2002;49:1339–1368, vii–viii

    PubMed  Google Scholar 

  • Doepfner KT, Boller D, Arcaro A. Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol. 2007;63:215–230.

    PubMed  Google Scholar 

  • Poland KS, Shardy DL, Azim M, et al. Overexpression of ZNF 342 by juxtaposition with MPO Promoter/enhancer in the novel translocation t(17;19) (q23; q13.32) in pediatric acute myeloid leukemia and analysis of ZNF 342 expression in leukemia. Genes Chromosomes Cancer. 2009;48:480–489.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Arceci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arceci, R.J., Small, D. (2010). Targeted Therapeutic Approaches for AML. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_4

Download citation

Publish with us

Policies and ethics