Skip to main content

The Effects of Visual Deprivation: Implications for Sensory Prostheses

  • Chapter
Book cover Artificial Sight

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 949 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Recanzone, G.H., Jenkins, W.M., Hradek, G.T., and Merzenich, M.M. (1992a). Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. J Neurophysiol, 67 (5), 1015–1030.

    Google Scholar 

  2. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A., and Dinse, H.R. (1992b). Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J Neurophysiol, 67 (5), 1031–1056.

    Google Scholar 

  3. Recanzone, G.H., Schreiner, C.E., and Merzenich, M.M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 1993 Jan;13(1 87-103), 13 (1), 87–103.

    Google Scholar 

  4. Oh, S.H., Kim, C.S., Kang, E.J., Lee, D.S., Lee, H.J., Chang, S.O., Ahn, S.H., Hwang, C.H., Park, H.J., and Koo, J.W. (2003). Speech perception after cochlear implantation over a 4-year time period. Acta Otolaryngol, 123 (2), 148–153.

    Article  Google Scholar 

  5. Ghose, G.M., Yang, T., and Maunsell, J.H. (2002). Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol, 87 (4), 1867–1888.

    Google Scholar 

  6. Schoups, A., Vogels, R., Qian, N., and Orban, G. (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature, 412 (6846), 549–553.

    Article  ADS  Google Scholar 

  7. Furmanski, C.S., Schluppeck, D., and Engel, S.A. (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol, 14 (7), 573–578.

    Article  Google Scholar 

  8. Gilbert, C.D., and Wiesel, T.N. (1992). Receptive field dynamics in adult primary visual cortex. Nature, 356 (6365), 150–152.

    Article  ADS  Google Scholar 

  9. Kaas, J.H., Krubitzer, L.A., Chino, Y.M., Langston, A.L., Polley, E.H., and Blair, N. (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science, 248 (4952), 229–231.

    Article  ADS  Google Scholar 

  10. Smirnakis, S.M., Brewer, A.A., Schmid, M.C., Tolias, A.S., Schuz, A., Augath, M., Inhoffen, W., Wandell, B.A., and Logothetis, N.K. (2005). Lack of long-term cortical reorganization after macaque retinal lesions. Nature, 435 (7040), 300–307.

    Article  ADS  Google Scholar 

  11. Baker, C.I., Peli, E., Knouf, N., & Kanwisher, N.G. (2005). Reorganization of visual processing in macular degeneration. J Neurosci, 25 (3), 614–618.

    Article  Google Scholar 

  12. Yang, T., and Maunsell, J.H. (2004). The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci, 24 (7), 1617–1626.

    Article  Google Scholar 

  13. Desimone, R., Albright, T.D., Gross, C.G., and Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci, 4 (8), 2051–2062.

    Google Scholar 

  14. Logothetis, N.K., Pauls, J., and Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Curr Biol, 5 (5), 552–563.

    Article  Google Scholar 

  15. Rolls, E.T., and Tovee, M.J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol, 73 (2), 713–726.

    Google Scholar 

  16. Young, M.P., and Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science, 256 (5061), 1327–1331.

    Article  ADS  Google Scholar 

  17. Fine, I., and Jacobs, R.A. (2002). Comparing perceptual learning across tasks: A review. Journal of Vision, 2 (5), 190–203.

    Article  Google Scholar 

  18. Amedi, A., Raz, N., Pianka, P., Malach, R., and Zohary, E. (2003). Early ’visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci, 6 (7), 758–766.

    Article  Google Scholar 

  19. Hunt, D.L., King, B., Kahn, D.M., Yamoah, E.N., Shull, G.E., and Krubitzer, L. (2005). Aberrant retinal projections in congenitally deaf mice: How are phenotypic characteristics specified in development and evolution? Anat Rec A Discov Mol Cell Evol Biol, 287 (1), 1051–1066.

    Google Scholar 

  20. Pallas, S.L., Razak, K.A., and Moore, D.R. (2002). Cross-modal projections from LGN to primary auditory cortex following perinatal cochlear ablation in ferrets. Society for Neuroscience (Orlando, Florida).

    Google Scholar 

  21. Rauschecker, J.P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci, 18, 36–43.

    Article  Google Scholar 

  22. Sur, M., Pallas, S.L., and Roe, A.W. (1990). Cross-modal plasticity in cortical development: differentiation and specification of sensory neocortex. Trends Neurosci, 13 (13), 227–233.

    Article  Google Scholar 

  23. Lessard, N., Pare, M., Lepore, F., and Lassonde, M. (1998). Early-blind human subjects localize sound sources better than sighted subjects. Nature, 395 (6699), 278–280.}

    Article  ADS  Google Scholar 

  24. Roder, B. (1999). Improved auditory spatial tuning in blind humans. Nature 400, 400, 162–166.

    Article  Google Scholar 

  25. Voss, P., Lassonde, M., Gougoux, F., Fortin, M., Guillemot, J.P., and Lepore, F. (2004). Early- and late-onset blind individuals show supra-normal auditory abilities in far-space. Curr Biol, 14 (19), 1734–1738.

    Article  Google Scholar 

  26. Doucet, M.E., Guillemot, J.P., Lassonde, M., Gagne, J.P., Leclerc, C., and Lepore, F. (2005). Blind subjects process auditory spectral cues more efficiently than sighted individuals. Exp Brain Res, 160 (2), 194–202.

    Article  Google Scholar 

  27. Gougoux, F., Lepore, F., Lassonde, M., Voss, P., Zatorre, R.J., and Belin, P. (2004). Neuropsychology: pitch discrimination in the early blind. Nature, 430 (6997), 309.

    Google Scholar 

  28. Grant, A.C., Thiagarajah, M.C., and Sathian, K. (2000). Tactile perception in blind Braille readers: a psychophysical study of acuity and hyperacuity using gratings and dot patterns. Percept Psychophys, 62 (2), 301–312.

    Google Scholar 

  29. Van Boven, R.W., Hamilton, R.H., Kauffman, T., Keenan, J.P., and Pascual-Leone, A. (2000). Tactile spatial resolution in blind Braille readers. Neurology, 54, 2230–2236.

    Google Scholar 

  30. Bosworth, R.G., and Dobkins, K.R. (1997). Visual field asymmetries for motion processing in hearing vs. deaf subjects. Investigative Ophthalmology and Visual Science

    Google Scholar 

  31. Bosworth, R.G., and Dobkins, K.R. (1999). Left hemisphere dominance for motion processing in congenitally deaf individuals. Psychological Science, 10, 256–262.

    Article  Google Scholar 

  32. Bosworth, R.G., and Dobkins, K.R. (1999a). Left-hemisphere dominance for motion processing in deaf signers. Psychological Science, 10 (3), 256–262.

    Article  Google Scholar 

  33. Bosworth, R.G., and Dobkins, K.R. (2002b). Visual field asymmetries for motion processing in deaf and hearing signers. Brain Cogn, 49 (1), 170–181.

    Article  Google Scholar 

  34. Bavelier, D., Tomann, A., Hutton, C., Mitchell, T., Corina, D., Liu, G., and Neville, H. (2000). Visual attention to the periphery is enhanced in congenitally deaf individuals. J Neurosci, 20 (17), RC93.

    Google Scholar 

  35. Bosworth, R.G., and Dobkins, K.R. (2002a). The effects of spatial attention on motion processing in deaf signers, hearing signers, and hearing nonsigners. Brain Cogn, 49 (1), 152–169.

    Article  Google Scholar 

  36. Loke, W.H., and Song, S. (1991). Central and peripheral visual processing in hearing and nonhearing individuals. Bulletin of the Psychonomic Society, 29, 437–440.

    Google Scholar 

  37. Neville, H.J., and Lawson, D. (1987). Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res, 405 (2), 268–283.

    Article  Google Scholar 

  38. Parasnis, I., and Samar, V.J. (1985). Parafoveal attention in congenitally deaf and hearing young adults. Brain Cogn, 4 (3), 313–327.

    Article  Google Scholar 

  39. Proksch, J., and Bavelier, D. (2002). Changes in the spatial distribution of visual attention after early deafness. Journal of Cognitive Neuroscience, 14 (5), 687–701.

    Article  Google Scholar 

  40. Rettenbach, R., Diller, G., and Sireteanu, R. (1999). Do deaf people see better? Texture segmentation and visual search compensate in adult but not in juvenile subjects. J Cogn Neurosci, 11 (5), 560–583.

    Article  Google Scholar 

  41. Arnold, P., and Murray, C. (1998). Memory for faces and objects by deaf and hearing signers and hearing nonsigners. Journal of Psycholinguistic Research, 27, 481–497.

    Article  Google Scholar 

  42. Goldstein, N.S., Sexton, J., and Feldman, R.S. (2000). Encoding of facial expressions of emotion and knowledge of American Sign Language. Journal of Applied Social Psychology, 30, 67–76.

    Article  Google Scholar 

  43. McCullough, S., and Emmorey, K. (1997). Face processing by deaf ASL signers: evidence for expertise in distinguishing local features. Journal of Deaf Studies and Deaf Education, 2, 212–222.

    Google Scholar 

  44. Pascual-Leone, A., and Torres, F. (1993). Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain, 116 (Pt 1), 39–52.

    Article  Google Scholar 

  45. Sterr, A., Muller, M., Elbert, T., Rockstroh, B., and Taub, E. (1999). Development of cortical reorganization in the somatosensory cortex of adult Braille students. Electroencephalogr Clin Neurophysiol Suppl, 49, 292–298.

    Google Scholar 

  46. Sterr, A., Muller, M.M., Elbert, T., Rockstroh, B., Pantev, C., and Taub, E. (1998). Changed perceptions in Braille readers. Nature, 391 (6663), 134–135.

    Article  ADS  Google Scholar 

  47. Elbert, T., Sterr, A., Rockstroh, B., Pantev, C., Muller, M.M., and Taub, E. (2002). Expansion of the tonotopic area in the auditory cortex of the blind. J Neurosci, 22 (22), 9941–9944.

    Google Scholar 

  48. Fine, I., Finney, E.M., Boynton, G.M., and Dobkins, K.R. (2005). Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J Cogn Neurosci, 17 (10), 1621–1637.

    Article  Google Scholar 

  49. Bavelier, D., Brozinsky, C., Tomann, A., Mitchell, T., Neville, H., and Liu, G. (2001). Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J Neurosci, 21 (22), 8931–8942.

    Google Scholar 

  50. McCullough, S., Emmorey, K., and Sereno, M. (2005). Neural organization for recognition of grammatical and emotional facial expressions in deaf ASL signers and hearing nonsigners. Brain Res Cogn Brain Res, 22 (2), 193–203.

    Article  Google Scholar 

  51. Bavelier, D., and Neville, H.J. (2002). Cross-modal plasticity: where and how? Nat Rev Neurosci, 3 (6), 443–452.

    Google Scholar 

  52. Calvert, G.A., Bullmore, E.T., Brammer, M.J., Campbell, R., Williams, S.C., McGuire, P.K., Woodruff, P.W., Iversen, S.D., and David, A.S. (1997). Activation of auditory cortex during silent lipreading. Science, 276 (5312), 593–596.

    Article  Google Scholar 

  53. Sadato, N., Okada, T., Honda, M., and Yonekura, Y. (2002). Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage, 16 (2), 389–400.

    Article  Google Scholar 

  54. Sadato, N., Pascual-Leone, A., Grafman, J., Deiber, M.P., Ibanez, V., and Hallett, M. (1998). Neural networks for Braille reading by the blind. Brain, 121 (Pt 7), 1213–1229.

    Article  Google Scholar 

  55. Sadato, N., Pascual-Leone, A., Grafman, J., Ibanez, V., Deiber, M.P., Dold, G., and Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380 (6574), 526–528.

    Article  ADS  Google Scholar 

  56. Hamilton, R., Keenan, J.P., Catala, M., and Pascual-Leone, A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. Neuroreport, 11, 237–240.

    Article  Google Scholar 

  57. Cohen, L.G., Weeks, R.A., Sadato, N., Celnik, P., Ishii, K., and Hallett, M. (1999). Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol, 45 (4), 451–460.

    Article  Google Scholar 

  58. Pascual-Leone, A., and Hamilton, R. (2001). The metamodal organization of the brain. In: C. Casanova, and M. Ptito (Eds.), Progress in Brain Research, 134.

    Google Scholar 

  59. Hillis, A.E., Newhart, M., Heidler, J., Barker, P., Herskovits, E., and Degaonkar, M. (2005). The roles of the "visual word form area" in reading. Neuroimage, 24 (2), 548–559.

    Article  Google Scholar 

  60. Falchier, A., Clavagnier, S., Barone, P., and Kennedy, H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. J Neurosci, 22 (13), 5749–5759.

    Google Scholar 

  61. Rockland, K.S., and Ojima, H. (2003). Multisensory convergence in calcarine visual areas in macaque monkey. Int J Psychophysiol, 50 (1–2), 19–26.

    Article  Google Scholar 

  62. Levanen, S., Jousmaki, V., and Hari, R. (1998). Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr Biol, 8 (15), 869–872.

    Article  Google Scholar 

  63. Levanen, S., Uutela, K., Salenius, S., and Hari, R. (2001). Cortical representation of sign language: comparison of deaf signers and hearing non-signers. Cereb Cortex, 11 (6), 506–512.

    Article  Google Scholar 

  64. Finney, E.M., Clementz, B.A., Hickok, G., and Dobkins, K.R. (2003). Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport, 14 (11), 1425–1427.

    Article  Google Scholar 

  65. Finney, E.M., Fine, I., and Dobkins, K.R. (2001). Visual stimuli activate auditory cortex in the deaf. Nat Neurosci, 4 (12), 1171–1173.

    Article  Google Scholar 

  66. Penhune, V.B., Zatorre, R.J., MacDonald, J.D., and Evans, A.C. (1996). Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex, 6 (5), 661–672.

    Article  Google Scholar 

  67. Rademacher, J., Morosan, P., Schormann, T., Schleicher, A., Werner, C., Freund, H.J., and Zilles, K. (2001). Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage, 13 (4), 669–683.

    Article  Google Scholar 

  68. Westbury, C.F., Zatorre, R.J., and Evans, A.C. (1999). Quantifying variability in the planum temporale: a probability map. Cereb Cortex, 9 (4), 392–405.

    Article  Google Scholar 

  69. Emmorey, K., Allen, J.S., Bruss, J., Schenker, N., and Damasio, H. (2003). Morphometric analysis of auditory brain regions in congenitally deaf adults. Proc Natl Acad Sci U S A, 100 (17), 10049–10054.

    Article  ADS  Google Scholar 

  70. Catalano, S.M., and Shatz, C.J. (1998). Activity-dependent cortical target selection by thalamic axons. Science, 281 (5376), 559–562.

    Article  ADS  Google Scholar 

  71. Ghosh, A., and Shatz, C.J. (1992). Pathfinding and target selection by developing geniculocortical axons. J Neurosci, 12 (1), 39–55.

    Google Scholar 

  72. Sur, M., Angelucci, A., and Sharma, J. (1999). Rewiring cortex: the role of patterned activity in development and plasticity of neocortical circuits. J Neurobiol, 41 (1), 33–43.

    Article  Google Scholar 

  73. Schroeder, C.E. (2004). Cooperative Processing of Multisensory Cues in Auditory Cortex and Classic Multisensory Regions. International Multisensory Research Forum (Barcelona, Spain).

    Google Scholar 

  74. MacSweeney, M., Woll, B., Campbell, R., McGuire, P.K., David, A.S., Williams, S.C., Suckling, J., Calvert, G.A., and Brammer, M.J. (2002). Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain, 125 (Pt 7), 1583–1593.

    Article  Google Scholar 

  75. Nishimura, H., Hashikawa, K., Doi, K., Iwaki, T., Watanabe, Y., Kusuoka, H., Nishimura, T., and Kubo, T. (1999). Sign language ’heard’ in the auditory cortex. Nature, 397 (6715), 116.

    Article  ADS  Google Scholar 

  76. Petitto, L.A., Zatorre, R.J., Gauna, K., Nikelski, E.J., Dostie, D., and Evans, A.C. (2000). Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci USA, 97 (25), 13961–13966.

    Article  ADS  Google Scholar 

  77. von Senden, M. (1960). Space and Sight. (Great Britain: Butler and Tanner).

    Google Scholar 

  78. Cheselden, W. (1728). An account of some observations made by a young gentleman, who was born blind, or who lost his sight so early, that he had no remembrance of ever having seen, and was couch’d between 13 and 14 years of age. Phil. Trans., 402, 447–450.

    Google Scholar 

  79. Ackroyd, C., Humphrey, N.K., and Warrington, E.K. (1974). Lasting effects of early blindness. A case study. Q J Exp Psychol, 26 (1), 114–124.

    Article  Google Scholar 

  80. Carlson, S., and Hyvarinen, L. (1983). Visual rehabilitation after long lasting early blindness. Acta Ophthalmol (Copenh), 61 (4), 701–713.

    Article  Google Scholar 

  81. Carlson, S., Hyvarinen, L., and Raninen, A. (1986). Persistent behavioural blindness after early visual deprivation and active visual rehabilitation: a case report. Br J Ophthalmol, 70 (8), 607–611.

    Article  Google Scholar 

  82. Gregory, R.L., and Wallace, J.G. (1963). Recovery from early blindness: a case study. In: Exp. Psychological Soc. Monograph 2 (Cambridge: Heffer and Sons).

    Google Scholar 

  83. Sacks, O. (1995). To see and not to see. In: An Anthropologist on Mars (pp. 108–152). New York: Vintage Books, Random House.

    Google Scholar 

  84. Valvo, A. (1971). Sight restoration after long-term blindness: the problems and behavior patterns of visual rehabilitation. (New York: American Foundation for the blind).

    Google Scholar 

  85. Wright, M.J., Geffen, G.M., and Geffen, L.B. (1995). Event related potentials during covert orientation of visual attention: effects of cue validity and directionality. Biol Psychol, 41 (2), 183–202.

    Article  Google Scholar 

  86. Fine, I., Wade, A., Boynton, G.M.B., Brewer, A., May, M., Wandell, B., and MacLeod, D.I.A. (2003). The neural and functional effects of long-term visual deprivation on human cortex. Nature Neuroscience, 6 (9)

    Google Scholar 

  87. Bradley, D.C., Chang, G.C., and Andersen, R.A. (1998). Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature, 392 (6677), 714–717.

    Article  ADS  Google Scholar 

  88. Dodd, J.V., Krug, K., Cumming, B.G., and Parker, A.J. (2001). Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J Neurosci, 21 (13), 4809–4821.

    Google Scholar 

  89. Orban, G.A., Sunaert, S., Todd, J.T., Van Hecke, P., and Marchal, G. (1999). Human cortical regions involved in extracting depth from motion. Neuron, 24 (4), 929–940.

    Article  Google Scholar 

  90. Huk, A.C., Dougherty, R.F., and Heeger, D.J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci, 22 (16), 7195–7205.

    Google Scholar 

  91. Field, D.J., Hayes, A., and Hess, R.F. (1993). Contour integration by the human visual system: evidence for a local “association field”. ision Res, 33 (2), 173–193.

    Article  Google Scholar 

  92. Glass, L. (1969). Moire effect from random dots. Nature, 223 (206), 578–580.

    Article  ADS  Google Scholar 

  93. Lewis, T.L., Ellemberg, D., Maurer, D., Wilkinson, F., Wilson, H.R., Dirks, M., and Brent, H.P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans. Vision Res, 42 (8), 939–948.

    Article  Google Scholar 

  94. Ross, J., Badcock, D.R., and Hayes, A. (2000). Coherent global motion in the absence of coherent velocity signals. Curr Biol, 10 (11), 679–682.

    Article  Google Scholar 

  95. Shepard, R.N. (1990). Mind Sights. Original Visual Illusions, Ambiguities, and Other Anomalies With a Commentary on the Play of Mind in Perception and Art. (New York, NY: W.H. Freeman and Co).

    Google Scholar 

  96. Kanwisher, N., McDermott, J., and Chun, M.M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci, 17 (11), 4302–4311.

    Google Scholar 

  97. Farah, M.J., Wilson, K.D., Drain, M., and Tanaka, J.N. (1998). What is “special” about face perception? Psychol Rev, 105 (3), 482–498.

    Article  Google Scholar 

  98. Le Grand, R., Mondloch, C.J., Maurer, D., and Brent, H.P. (2001). Neuroperception. Early visual experience and face processing. Nature, 410 (6831), 890.

    Article  ADS  Google Scholar 

  99. Le Grand, R., Mondloch, C.J., Maurer, D., and Brent, H.P. (2003). Expert face processing requires visual inpupt to the right hemisphere during infancy. Nature Neuroscience, 6 (10), 1108–1112.

    Article  Google Scholar 

  100. Fine, I., Smallman, H.S., Doyle, P.G., and MacLeod, D.I.A. (2002). Visual function before and after the removal of congenital bilateral cataracts in adulthood. Vision Research, 42, 191–210.

    Article  Google Scholar 

  101. Geers, A.E., Nicholas, J.G., and Sedey, A.L. (2003). Language skills of children with early cochlear implantation. Ear Hear, 24 (1 Suppl), 46S–58S.

    Article  Google Scholar 

  102. Svirsky, M.A., Teoh, S.W., and Neuburger, H. (2004). Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiol Neurootol, 9 (4), 224–233.

    Article  Google Scholar 

  103. Waltzman, S.B., and Cohen, N.L. (1998). Cochlear implantation in children younger than 2 years old. Am J Otol, 19 (2), 158–162.

    Google Scholar 

  104. Sharma, A., Dorman, M.F., and Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res, 203 (1–2), 134–143.

    Article  Google Scholar 

  105. Lee, D.S., Sung Lee, J., Ha Oh, S., Kim, S., Kim, J., Chung, J., Lee, M.C., and Kim, C.S. (2001). Cross-modal plasticity and cochlear implants. Nature, 409

    Google Scholar 

  106. Harrison, R.V., Gordon, K.A., and Mount, R.J. (2005). Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Dev Psychobiol, 46 (3), 252–261.

    Article  Google Scholar 

  107. Kauffman, T., Theoret, H., and Pascual-Leone, A. (2002). Braille character discrimination in blindfolded human subjects. Neuroreport, 13 (5), 571–574.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fine, I. (2007). The Effects of Visual Deprivation: Implications for Sensory Prostheses. In: Humayun, M.S., Weiland, J.D., Chader, G., Greenbaum, E. (eds) Artificial Sight. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49331-2_3

Download citation

Publish with us

Policies and ethics