Skip to main content

Mechanotransduction in Cardiac Remodeling and Heart Failure

  • Chapter

Abstract

Mechanotransduction is the process by which the cells of the heart convert mechanical signals to chemical signals responsible for cellular adaptation and remodeling. When this system cannot meet the demands of increased loading conditions, the cellular response will not be adequate, and eventually the pumping function of the heart will fail. Mechanical signaling and force transmission within and outside the myocyte are important players in the mechanotransduction process, and the cytoskeleton is a key component in the structural link between the force-generating sarcomere, the cell membrane and putative intra-cellular stress-sensing components. Several defects in cytoskeletal components have been linked to cardiac dilation and heart failure. LIM proteins are one such structural component of the cytoskeleton, and defects in these proteins lead to both right and left ventricular dysfunction. Although these proteins may have chemical signaling roles in mechanotransduction, their structural role in force transmission and mechanical signaling is being investigated and characterized. Thus, there is evidence that structural components of the myocardium such as the myocyte cytoskeleton play a critical role in mechanotransduction and are part of the mechanism behind cardiac remodeling and eventual heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunwald E. Pathophysiology of Heart Failure. In: Braunwald E, ed. Heart Disease: A Textbook of Cardiovascular Medicine. 4th ed. Philadelphia: WB Saunders Co., 1992:393–418.

    Google Scholar 

  2. Sugden PH. Mechanotransduction in cardiomyocyte hypertrophy. Circulation 2001; 103:1375–1377.

    PubMed  CAS  Google Scholar 

  3. Sussman MA, McCulloch AD, Borg TK. Dance band on the titanic: Biomechanical signaling in cardiac hypertrophy. Circ Res 2002; 91:888–898.

    Article  PubMed  CAS  Google Scholar 

  4. Ross RS. The extracellular connections: The role of integrins in myocardial remodeling. J Card Fail 2002; 8:S326–S331.

    Article  PubMed  CAS  Google Scholar 

  5. Clark KA, McElhinny AS, Beckerle MC et al. Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 2002; 18:637–706.

    Article  PubMed  CAS  Google Scholar 

  6. Hein S, Kostin S, Heling A et al. The role of the cytoskeleton in heart failure. Cardvasc Res 2000; 45:273–278.

    Article  CAS  Google Scholar 

  7. Sadoshima J, Izumo S. Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. J Recept Res 1993; 13:777–794.

    PubMed  CAS  Google Scholar 

  8. Grossman W. Cardiac hypertrophy: Useful adaptation or pathologic process? Am J Med 1980; 69:576–583.

    Article  PubMed  CAS  Google Scholar 

  9. Mann DL, Kent RL, Cooper IV G. Load regulation of the properties of adult feline cardiocytes: Growth induction by cellular deformation. Circ Res 1989; 64:1079–1090.

    PubMed  CAS  Google Scholar 

  10. Reneman RS, Arts T, van Bilsen M et al. Mechanoperception and mechanotransduction in cardiac adaptation: Mechanical and molecular aspects. In: Sideman S, Beyar R, eds. Molecular and Subcel-lular Cardiology: Effects of Structure and Function. New York: Plenum Press, 1995:185–194.

    Google Scholar 

  11. Tavi P, Laine M, Weckström M et al. Cardiac mechanotransduction: From sensing to disease and treatment. Trend Pham Sci 2001; 55:254–260.

    Article  Google Scholar 

  12. Anversa P, Ricci R, Olivetti G. Quantitative structural analysis of the myocardium during physiological growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol 1986; 7:1140–1149.

    PubMed  CAS  Google Scholar 

  13. Ross Jr J. Adaptations of the left ventricle to chronic volume overload. Circ Res 1974; 34:35:64–70.

    Google Scholar 

  14. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975; 56:56–64.

    Article  PubMed  CAS  Google Scholar 

  15. Smith SH, Bishop SP. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J Mol Cell Cardiol 1985; 17:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  16. Sadoshima J, Jahn L, Takahashi T et al. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. J Biol Chem 1992; 267:10551–10560.

    PubMed  CAS  Google Scholar 

  17. Simpson DG, Sharp WW, Borg TK et al. Mechanical regulation of cardiac myofibrillar structure. Ann NY Acad Sci 1995; 752:131–140.

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto K, Dang QN, Maeda Y et al. Regulation of cardiomyocyte mechanotransduction by the cardiac cycle. Circulation 2001; 103:1459–1464.

    PubMed  CAS  Google Scholar 

  19. Simpson DG, Majeski M, Borg TK et al. Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res 1999; 85:59–69.

    Google Scholar 

  20. Gopalan SM, Flaim C, Bhatia SN et al. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Bioeng Biotech 2003; 81:578–587.

    Article  CAS  Google Scholar 

  21. Kumar A, Chaudhry I, Reid MB et al. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 2002; 277:46493–46503.

    Article  PubMed  CAS  Google Scholar 

  22. Yamazaki T, Yazaki Y. Molecular basis of cardiac hypertrophy. Z Kardiol 2000; 89:1–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: Mechanisms and signal transduction pathways. Cardiovasc Res 2000; 47:23–37.

    Article  PubMed  CAS  Google Scholar 

  24. Sadoshima J, Takahashi T, Jahn L et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 1992; 89:9905–9909.

    Article  PubMed  CAS  Google Scholar 

  25. Wang N, Bulter JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  26. Watson P. Function follows form: Generation of intracellular signals by cell deformation. FASEB J 1991; 5:2013–2019.

    PubMed  CAS  Google Scholar 

  27. Sadoshima J, Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of an autocrine/paracrine mechanism. EMBO J 1993; 12:1681–1692.

    PubMed  CAS  Google Scholar 

  28. Kumoro I, Katoh Y, Kaida T et al. Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 1991; 266:1265–1268.

    Google Scholar 

  29. Bustamante JO, Ruknudin A, Sachs F. Stretch-activated channels in heart cells: Relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 1991; 17:S110–S113.

    Article  PubMed  Google Scholar 

  30. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993; 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  31. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: Emerging paradigms of signal transduction. Ann Rev Cell Dev Biol 1995; 11:549–599.

    Article  CAS  Google Scholar 

  32. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Ann Rev Physiol 1997; 59:551–571.

    Article  CAS  Google Scholar 

  33. MacKenna DA, Dolfi F, Vuori K et al. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 1998; 101:301–310.

    PubMed  CAS  Google Scholar 

  34. Keller RS, Shai SY, Babbitt CJ et al. Disruption of integrin function in the murine myocardium leads to perinatal lethality, fibrosis, and abnormal cardiac performance. Am J Pathol 2001; 158:1079–1090.

    PubMed  CAS  Google Scholar 

  35. Ross RS, Pham C, Shai SY et al. Betal integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 1998; 82:1160–1172.

    PubMed  CAS  Google Scholar 

  36. Simpson DG, Terracio L, Terracio M et al. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 1994; 161:89–105.

    Article  PubMed  CAS  Google Scholar 

  37. Konhilas JP, Irving TC, De Tombe PP. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch 2002; 445:305–310.

    Article  PubMed  CAS  Google Scholar 

  38. Fuchs F, Smith SH. Calcium, cross-bridges, and the frank-starling relationship. News Physiol Sci 2001; 16:5–10.

    PubMed  CAS  Google Scholar 

  39. Dobesh DP, Konhilas JP, de Tombe PP. Cooperative activation in cardiac muscle: Impact of sarcomere length. Am J Physiol 2002; 282:H1055–H1062.

    CAS  Google Scholar 

  40. Cazorla O, Wu Y, Irving TC et al. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 2001; 88:1028–1035.

    Article  PubMed  CAS  Google Scholar 

  41. Lipp P, Lavine M, Tovey SC et al. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 2000; 10:939–941.

    Article  PubMed  CAS  Google Scholar 

  42. Arts T, Prinzen FW, Snoeckx LHEH et al. A model approach to the adaptation of cardiac structure by mechanical feedback in the environment of the cell. In: Sideman S, Beyar R, eds. Molecular and Subcellular Cardiology: Effects of structure and function. New York: Plenum Press, 1995:217–228.

    Google Scholar 

  43. Ingber DE. Tensegrity: The architectural basis of cellular mechanotransduction. Ann Rev Physiol 1997; 59:575–599.

    Article  CAS  Google Scholar 

  44. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Nat Acad Sci 1997; 94:849–854.

    Article  PubMed  CAS  Google Scholar 

  45. Ezzell RM, Goldmann WH, Wang N et al. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 1997; 231:14–26.

    Article  PubMed  CAS  Google Scholar 

  46. Straub V, Campbell KP. Muscular distrophies and the dystrophin-glycoprotein complex. Curr Op Neuro 1997; 10:168–175.

    Article  CAS  Google Scholar 

  47. Ruiz P, Birchmeier W. The plakoglobin knock-out mouse: A paradigm for the molecular analysis of cardiac cell junction formation. Trends Cardiovasc Med 1998; 8:97–101.

    Article  Google Scholar 

  48. Hein S, Scholz D, Fujitani N et al. Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 1994; 26:1291–1306.

    Article  PubMed  CAS  Google Scholar 

  49. Kawaguchi N, Fujitani N, Schaper J et al. Pathological changes in myocardial cytoskeleton in cardiomyopathic hamster. Mol Cell Biochem 1995; 144:75–79.

    Article  PubMed  CAS  Google Scholar 

  50. Olson T, Michals V, Thibodean SN et al. Actin mutations in dilated cardiomyopathy: A heritable form of heart failure. Science 1998; 280:750–752.

    Article  PubMed  CAS  Google Scholar 

  51. Li D, Tapscoft T, Gonzalez O et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 1999; 100:461–464.

    PubMed  CAS  Google Scholar 

  52. Ortiz-Lopez R, Li H, Su J et al. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 1997; 95:2434–2440.

    PubMed  CAS  Google Scholar 

  53. Chien KR. Stress pathways and heart failure. Cell 1999; 98:555–558.

    Article  PubMed  CAS  Google Scholar 

  54. Seidman CE, Seidman JG. Molecular genetics of inherited cardiomyopathies. In: Chien KR, ed. Molecular basis of heart disease. Philadelphia: WB Saunders Co., 1998:251–263.

    Google Scholar 

  55. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 1998; 10:131–139.

    Article  PubMed  CAS  Google Scholar 

  56. Codd MB, Sugrue DD, Gersh BJ et al. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy: A population-based study in Olmsted County, Minnesota 1975–1984. Circulation 1989; 80:564–572.

    PubMed  CAS  Google Scholar 

  57. Katz AM. Cytoskeletal abnormalities in the failing heart: Out on a LIM? Circulation 2000; 101:2672–2673.

    PubMed  CAS  Google Scholar 

  58. Dawid IB, Toyama R, Taira M. LIM domain proteins. C R Acad Sci III 1995; 318:295–306.

    PubMed  CAS  Google Scholar 

  59. Schmeichel KL, Beckerle MC. The LIM domain is a modular protein-binding interface. Cell 1994; 79:211–219.

    Article  PubMed  CAS  Google Scholar 

  60. Arber S, Haider G, Caroni P. Muscle LIM protein, a novel essential regulator of myogensis, promotes myogenic differentiation. Cell 1994; 79:221–231.

    Article  PubMed  CAS  Google Scholar 

  61. Guy PM, Kenny DA, Gil GN. The PDZ domain of the LIM protein enigma binds to beta-tropomyosin. Mol Biol Cell 1999; 10:1973–1984.

    PubMed  CAS  Google Scholar 

  62. Xia H, Winokur ST, Luo W-L et al. Actinin-associated LIM protein: Identification of a domain interaction between PDZ and spectrin-like repeat motifs. J Cell Biol 1997; 139:507–515.

    Article  PubMed  CAS  Google Scholar 

  63. Zhou Q, Ruiz-Lozano P, Martone ME et al. Cypher, a striated muscle-restricted PDZ and LIM domain-containing protein, binds to alpha-actinin-2 and protein kinase C. J Biol Chem 1999; 274:19807–19813.

    Article  PubMed  CAS  Google Scholar 

  64. Chu PH, Ruiz-Lozano P, Zhou Q et al. Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 2000; 95:259–265.

    Article  PubMed  CAS  Google Scholar 

  65. Yu TS, Moctezuma-Anaya M, Kubo A et al. The heart LIM protein gene (Hip), expressed in the developing and adult heart, defines a new tissue-specific LIM-only protein family. Mech Dev 2002; 116:187–192.

    Article  PubMed  CAS  Google Scholar 

  66. Pavalko FM, Otey CA. Role of adhesion molecule cytoplasmic domains in mediating interaction with cytoskeleton. Proc Soc Exper Biol Med 1994; 205:282–293.

    CAS  Google Scholar 

  67. Marfatia SM, Morais Cabral JH, Lin L et al. Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton. J Cell Biol 1996; 135:753–766.

    Article  PubMed  CAS  Google Scholar 

  68. Brenman JE, Bredt DS. Synaptic signaling by nitric oxide. Curr Opin Neurobiol 1997; 7:374–378.

    Article  PubMed  CAS  Google Scholar 

  69. Pashmforoush M, Pomies P, Peterson KL et al. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 2001; 7:591–597.

    Article  PubMed  CAS  Google Scholar 

  70. Arber S, Hunter JJ, Ross Jr J et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997; 88:393–403.

    Article  PubMed  CAS  Google Scholar 

  71. Bender JR. Idiopathic dilated cardiomyopathy: An immunologic, genetic, or infectious disease, or all of the above? Circulation 1991; 83:704–706.

    PubMed  CAS  Google Scholar 

  72. Flick MJ, Konieczny SF. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 2000; 113:1553–1564.

    PubMed  CAS  Google Scholar 

  73. Ecarnot-Laubriet A, De Luca K, Vandroux D et al. Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J Mol Cell Cardiol 2000; 32:2385–95.

    Article  PubMed  CAS  Google Scholar 

  74. Su Z, Yao A, Zubair I et al. Effects of deletion of muscle LIM protein on myocyte function. Am J Physiol 2001; 280:H2665–H2673.

    CAS  Google Scholar 

  75. Knoll R, Hoshijima M, Hoffman HM et al. The cardiac mechanical stretch sensor machinery involves a Z-disk complex that is defective in a subset of human dilated cardiomyopathy. Cell 2003; 111:943–956.

    Article  Google Scholar 

  76. Wu Y, Cazorla O, Labeit D et al. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 2000; 32:2151–62.

    Article  PubMed  CAS  Google Scholar 

  77. Furukawa T, Ono Y, Tsuchiya H et al. Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J Mol Biol 2001; 313:775–784.

    Article  PubMed  CAS  Google Scholar 

  78. Ehler E, Horowits R, Zuppinger C et al. Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 2001; 153:763–772.

    Article  PubMed  CAS  Google Scholar 

  79. Omens JH, Usyk TP, Li Z et al. Muscle LIM protein deficiency leads to alterations in passive ventricular mechanics. Am J Physiol Heart Circ Physiol 2002; 282:H680–687.

    PubMed  CAS  Google Scholar 

  80. McCulloch AD, Omens JH. Factors affecting the regional mechanics of the diastolic heart. In: Glass L, Hunter PJ, McCulloch AD, eds. Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. New York: Springer-Verlag, 1991:87–119.

    Google Scholar 

  81. Usyk TP, Mazhari R, McCulloch AD. Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J Elas 2000; 61:143–164.

    Article  Google Scholar 

  82. Thiedemann KU, Holubarsch C, Medugorac I et al. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. Bas Res Cardiol 1983; 78:140–155.

    Article  CAS  Google Scholar 

  83. Doering CW, Jalil JE, Janicki JS et al. Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 1988; 22:686–695.

    PubMed  CAS  Google Scholar 

  84. Conrad C, Brooks W, Hayes J et al. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 1995; 91:161–170.

    PubMed  CAS  Google Scholar 

  85. Emery JL, Omens JH. Mechanical regulation of myocardial growth during volume-overload hypertrophy in the rat. Am J Physiol 1998; 273:H1198–H1204.

    Google Scholar 

  86. Lin DH, Yin FC. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J Biomech Eng 1998; 120:504–517.

    PubMed  CAS  Google Scholar 

  87. Iannini JP, Spinale FG. The identification of contributory mechanisms for the development and progression of congestive heart failure in animal models. J Heart Lung Transplant 1996; 15:1138–1150.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Omens, J.H., McCulloch, A.D., Lorenzen-Schmidt, I. (2007). Mechanotransduction in Cardiac Remodeling and Heart Failure. In: Cardiac Mechanotransduction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48868-4_5

Download citation

Publish with us

Policies and ethics