Skip to main content

Solvent and Environmental Effects

  • Chapter
Book cover Principles of Fluorescence Spectroscopy

Abstract

Solvent polarity and the local environment have profound effects on the emission spectral properties of fluorophores. The effects of solvent polarity are one origin of the Stokes shift, which is one of the earliest observations in fluorescence. Emission spectra are easily measured, resulting in numerous publications on emission spectra of fluorophores in different solvents, and when bound to proteins, membranes, and nucleic acids. One common use of solvent effects is to determine the polarity of the probe binding site on the macromolecule. This is accomplished by comparison of the emission spectra and/or quantum yields when the flu-orophore is bound to the macromolecule or dissolved in solvents of different polarity. However, there are many additional instances where solvent effects are used. Suppose a fluorescent ligand binds to a protein or membrane. Binding is usually accompanied by spectral shift or change in quantum yield due to the different environment for the bound ligand. Alternatively, the ligand may induce a spectral shift in the intrinsic or extrinsic protein fluorescence. In either case the spectral changes can be used to measure the extent of binding.

The effects of solvent and environment on fluorescence spectra are complex, and are due to several factors in addition to solvent polarity. The factors that affect fluorescence emission spectra and quantum yields include:

  • Solvent polarity and viscosity

  • Rate of solvent relaxation

  • Probe conformational changes

  • Rigidity of the local environment

  • Internal charge transfer

  • Proton transfer and excited state reactions

  • Probe–probe interactions

  • Changes in radiative and non-radiative decay rates

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safarzadeh-Amiri A, Thompson M, Krull UJ. 1989. Trans-4-dimethylamino-4′-(1-oxobutyl)stilbene: a new fluorescent probe of the bilayer lipid membrane. J Photochem Photobiol A: Chem 47:299–308.

    Article  CAS  Google Scholar 

  2. Lippert Von E. 1957. Spektroskopische bistimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzu-stand. Z Electrochem 61:962–975.

    CAS  Google Scholar 

  3. Mataga N, Kaifu Y, Koizumi M. 1956. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull Chem Soc Jpn 29:465–470.

    Article  CAS  Google Scholar 

  4. Rettig W. 1986. Charge separation in excited states of decoupled systems: TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew Chem, Int Ed 25:971–988.

    Article  Google Scholar 

  5. Bayliss NS. 1950. The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution. J Chem Phy 18(3):292–296.

    Article  CAS  Google Scholar 

  6. Bayliss NS, McRae EG. 1954. Solvent effects in organic spectra: dipole forces and the Franck-Condon principle. J Phys Chem 58:1002–1006.

    Article  CAS  Google Scholar 

  7. McRae EG. 1956. Theory of solvent effects of molecular electronic spectra: frequency shifts. J Phys Chem 61:562–572.

    Article  Google Scholar 

  8. Griffiths DJ. 1999. Introduction to electrodynamics. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  9. Kawski A. 1992. Solvent-shift effect of electronic spectra and excited state dipole moments. In Progress in photochemistry and photo-physics, pp. 1–47. Ed JF Rabek, CRC Press, New York.

    Google Scholar 

  10. Seliskar CJ, Brand L. 1971. Electronic spectra of 2-aminonaphtha-lene-6-sulfonate and related molecules, II: effects of solvent medium on the absorption and fluorescence spectra. J Am Chem Soc 93:5414–5420.

    Article  CAS  Google Scholar 

  11. Suppan P. 1990. Solvatochromic shifts: the influence of the medium on the energy of electronic states. J Photochem Photobiol A: Chem 50:293–330.

    Article  CAS  Google Scholar 

  12. Bakhshiev NG. 1961. Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions, I: theory (liquid solutions). Opt Spectrosc 10:379–384.

    Google Scholar 

  13. Bakhshiev NG. 1962. Universal molecular interactions and their effects on the position of electronic spectra of molecules in two-component solutions, IV: dependence on the magnitude of the Stokes shift in the solvent luminescence spectrum (liquid solutions). Opt Spectrosc 12:309–313.

    Google Scholar 

  14. Bakhshiev NG. 1962. Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. Opt Spectrosc 13:24–29.

    Google Scholar 

  15. Kawski A. 2002. On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch A 57:255–262.

    CAS  Google Scholar 

  16. Weber G, Laurence DJR. 1954. Fluorescent indicators of absorption in aqueous solution and on the solid phase. Biochem J 56:XXXI.

    CAS  Google Scholar 

  17. Slavik J. 1982. Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25.

    CAS  Google Scholar 

  18. McClure WO, Edelman GM. 1954. Fluorescent probes for confor-mational states of proteins, I: mechanism of fluorescence of 2-p-tolu-idinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry 5:1908–1919.

    Article  Google Scholar 

  19. Brand L, Seliskar CJ, Turner DC. 1971. The effects of chemical environment on fluorescence probes. In Probes of structure and function of macromolecules and membranes, pp. 17–39. Ed B Chance, CP Lee, J-K Blaisie. Academic Press, New York.

    Google Scholar 

  20. Turner DC, Brand L. 1968. Quantitative estimation of protein binding site polarity: fluorescence of N-arylaminonaphthalenesulfonates. Biochemistry 7(10):3381–3390.

    Article  CAS  Google Scholar 

  21. Perov AN. 1980. Energy of intermediate pair interactions as a characteristic of their nature: theory of the solvato (fluoro) chromism of three-component solutions. Opt Spectrosc 49:371–374.

    Google Scholar 

  22. Neporent BS, Bakhshiev NG. 1960. On the role of universal and specific intermolecular interactions in the influence of the solvent on the electronic spectra of molecules. Opt Spectrosc 8:408–413.

    CAS  Google Scholar 

  23. Petrov NK, Markov DE, Gulakov MN, Alfimov MV, Staerk H. 2002. Study of preferential solvation in binary mixtures by means of frequency-domain fluorescence spectroscopy. J Fluoresc 12(1):19–24.

    Article  CAS  Google Scholar 

  24. Petrov NK, Wiessner A, Staerk H. 2001. A simple kinetic model of preferential solvation in binary mixtures. Chem Phys Lett 349:517–520.

    Article  CAS  Google Scholar 

  25. Schulman SG, Townsend RW, Baeyens WRG. 1995. Proton-transfer kinetics of photoexcited 2-hydroxybiphenyl in aqueous methanol solutions. Anal Chim Acta 303:25–29.

    Article  CAS  Google Scholar 

  26. Kim S, Chang DW, Park SY, Kawai H, Nagamura T. 2002. Excited-state intramolecular proton transfer in a dendritic macromolecular system: poly(aryl ether) dendrimers with phototautomerizable quino-line core. Macromolecules 35:2748–2753.

    Article  CAS  Google Scholar 

  27. Carmona C, Balón M, Galán M, Guardado P, Munoz MA. 2002. Dynamic Study of excited state hydrogen-bonded complexes of har-mane in cyclohexane-toluene mixtures. Photochem Photobiol 76(3):239–246.

    Article  CAS  Google Scholar 

  28. Molotsky T, Huppert D. 2002. Solvation statics and dynamics of coumarin 153 in hexane-propionitrile solvent mixtures. J Phys Chem A 106:8525–8530.

    Article  CAS  Google Scholar 

  29. Fery-Forgues S, Fayet J-P, Lopez A. 1993. Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state. J Photochem Photobiol A: Chem 70: 229–243.

    Article  CAS  Google Scholar 

  30. Mazères S, Schram V, Tocanne J-F, Lopez A. 1996. 7-nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: differences in fluorescence behavior. Biophys J 71:327–335.

    Article  Google Scholar 

  31. Cherkasov AS. 1960. Influence of the solvent on the fluorescence spectra of acetylanthracenes. Akad Nauk SSSR Bull Phys Sci 24:597–601.

    Google Scholar 

  32. Tamaki T. 1982. The photoassociation of 1- and 2-acetylanthracene with methanol. Bull Chem Soc Jpn 55:1761–1767.

    Article  CAS  Google Scholar 

  33. Tamaki T. 1980. Polar fluorescent state of 1- and 2-acylanthracenes, II: The perturbation of protic solvents. Bull Chem Soc Jpn 53: 577–582.

    Article  CAS  Google Scholar 

  34. Perochon E, Tocanne J-F. 1991. Synthesis and phase properties of phosphatidylcholine labeled with 8-(2-anthroyl)-octanoic acid, a sol-vatochromic fluorescent probe. Chem Phys Lipids 58:7–17.

    Article  CAS  Google Scholar 

  35. Perochon E, Lopez A, Tocanne JF. 1991. Fluorescence properties of methyl 8-(2-anthroyl) octanoate, a solvatochromic lipophilic probe. Chem Phys Lipids 59:17–28.

    Article  CAS  Google Scholar 

  36. Rosenberg HM, Eimutus E. 1966. Solvent shifts in electronic spectra, I: Stokes shift in a series of homologous aromatic amines. Spectrochim Acta 22:1751–1757.

    Article  CAS  Google Scholar 

  37. Werner TC, Hercules DM. 1969. The fluorescence of 9-anthroic acid and its esters: environmental effects on excited-state behavior. J Phys Chem 73:2005–2011.

    Article  CAS  Google Scholar 

  38. Werner TC, Hoffman RM. 1973. Relation between an excited state geometry change and the solvent dependence of 9-methyl anthroate fluorescence. J Phys Chem 77:1611–1615.

    Article  CAS  Google Scholar 

  39. Badea MG, De Toma RP, Brand L. 1978. Nanosecond relaxation processes in liposomes. Biophys J 24:197–212.

    Article  CAS  Google Scholar 

  40. Lakowicz JR, Balter A. 1982. Direct recording of the initially excited and the solvent relaxed fluorescence emission of a tryptophan derivative in viscous solution by phase-sensitive detection of fluorescence. Photochem Photobiol 36:125–132.

    Article  CAS  Google Scholar 

  41. Lakowicz JR, Bevan DR, Maliwal BP, Cherek H, Balter A. 1983. Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes. Biochemistry 22:5714–5722.

    Article  CAS  Google Scholar 

  42. Weber G, Farris FJ. 1979. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)-naphthalene. Biochemistry 18:3075–3078.

    Article  CAS  Google Scholar 

  43. Sire O, Alpert B, Royer CA. 1996. Probing pH and pressure effects of the apomyoglobin heme pocket with the 2′-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid fluorophore. Biophys J 70:2903–2914.

    Article  CAS  Google Scholar 

  44. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD. 1983. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethy-laminonaphthalene (acrylodan). J Biol Chem 258:7541–7544.

    CAS  Google Scholar 

  45. Hendrickson HS, Dumdei EJ, Batchelder AG, Carlson GL. 1987. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2. Biochemistry 26:3697–3703.

    Article  CAS  Google Scholar 

  46. Sandez MI, Suarez A, Rios MA, Balo MC, Fernandez F, Lopez C. 1996. Spectroscopic study of new fluorescent probes. Photochem Photobiol 64(3):486–491.

    Article  CAS  Google Scholar 

  47. Lobo BC, Abelt CJ. 2003. Does PRODAN possess a planar or twisted charge-transfer excited state? Photophysical properties of two PRODAN derivatives. J Phys Chem A 107:10938–10943.

    Article  CAS  Google Scholar 

  48. Hutterer R, Hof M. 2002. Probing ethanol-induced phospholipid phase transitions by the polarity sensitive fluorescence probes prodan and patman. Z Phys Chem 216:333–346.

    CAS  Google Scholar 

  49. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M. 1997. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429.

    Article  CAS  Google Scholar 

  50. Parasassi T, Krasnowska EK, Bagatolli LA, Gratton E. 1998. Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373.

    Article  CAS  Google Scholar 

  51. Bagatolli LA, Gratton E, Khan TK, Chong PLG. 2000. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria sulfolobus acidocal-darius. Biophys J 79:416–425.

    Article  CAS  Google Scholar 

  52. Bondar OP, Rowe ES. 1999. Preferential interactions of fluorescent probe prodan with cholesterol. Biophys J 76:956–962.

    Article  CAS  Google Scholar 

  53. Bagatolli LA, Gratton E. 2000. Two-photon fluorescence microscopy of coexisting lipid domains in giant unilameller vesicles of binary phospholipid mixtures. Biophys J 78:290–305.

    Article  CAS  Google Scholar 

  54. Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, Jessup W. 2003. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100(26):15554–15559.

    Article  CAS  Google Scholar 

  55. Yoshihara T, Druzhinin SI, Zachariasse KA. 2004. Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J Am Chem Soc 126:8535–8539.

    Article  CAS  Google Scholar 

  56. Viard M, Gallay J, Vincent M, Meyer O, Robert B, Paternostre M. 1997. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophys J 73:2221–2234.

    Article  CAS  Google Scholar 

  57. Nowak W, Sygula A, Adamczak P, Balter A. 1986. On the possibility of fluorescence from twisted intramolecular charge transfer states of 2-dimethylamino-6-acylnaphthalenes: a quantum-chemical study. J Mol Struct 139:13–23.

    Google Scholar 

  58. Balter A, Nowak W, Pawelkiewicz W, Kowalczyk A. 1988. Some remarks on the interpretation of the spectral properties of prodan. Chem Phys Lett 143:565–570.

    Article  CAS  Google Scholar 

  59. Rettig W, Lapouyade R. 1994. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic pho-toreactions. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensors, pp. 109–149. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  60. Corneliβen C, Rettig W. 1994. Unusual fluorescence red shifts in TICT-forming boranes. J Fluoresc 4(1):71–74.

    Article  Google Scholar 

  61. Vollmer F, Rettig W, Birckner E. 1994. Photochemical mechanisms producing large fluorescence Stokes shifts. J Fluoresc 4(1):65–69.

    Article  CAS  Google Scholar 

  62. Rotkiewicz K, Grellmann KH, Grabowski ZR. 1973. Reinterpretation of the anomalous fluorescence of P-N,N-dimethylamino-benzonitrile. Chem Phys Lett 19:315–318.

    Article  CAS  Google Scholar 

  63. Grabowski ZR, Rotkiewicz K, Siemiarczuk A. 1979. Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer TICT states. J Lumin 18:420–424.

    Article  Google Scholar 

  64. Belletête M, Durocher G. 1989. Conformational changes upon excitation of dimethylamino para-substituted 3H-indoles: viscosity and solvent effects. J Phys Chem 93:1793–1799.

    Article  Google Scholar 

  65. Jones G, Jackson WR, Choi C-Y, Bergmark WR. 1985. Solvent effects on emission yield and lifetime for coumarin laser dyes: requirements for a rotatory decay mechanism. J Phys Chem 89: 294–300.

    Article  CAS  Google Scholar 

  66. Ayuk AA, Rettig W, Lippert E. 1981. Temperature and viscosity effects on an excited state equilibrium as revealed from the dual fluorescence of very dilute solutions of 1-dimethylamino-4-cyanonaph-thalene. Ber Bunsenges Phys Chem 85:553–555.

    CAS  Google Scholar 

  67. Kollmannsberger M, Rurack K, Resch-Genger U, Daub J. 1998. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J Phys Chem A 102:10211– 10220.

    Article  CAS  Google Scholar 

  68. Klymchenko AS, Duportail G, Mely Y, Demchenko AP. 2003. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100(20):11219– 11224.

    Article  CAS  Google Scholar 

  69. Klymchenko AS, Duportail G, Ozturk T, Pivovarenko VG, Mely Y, Demchenko AP. 2002. Novel two-band ratiometric fluorescence probes with different location and orientation in phospholipid membranes. Chem Biol 9:1199–1208.

    Article  CAS  Google Scholar 

  70. Ercelen S, Klymchenko AS, Demchenko AP. 2003. Novel two-color fluorescence probe with extreme specificity to bovine serum albumin. FEBS Lett 538:25–28.

    Article  CAS  Google Scholar 

  71. Fahrni CJ, Henary MM, VanDerveer DG. 2002. Excited-state intramolecular proton transfer in 2-(2′-tosylaminophenyl)benzimida-zole. J Phys Chem A 106:7655–7663.

    Article  CAS  Google Scholar 

  72. Dennison SM, Guharay J, Sengupta PK. 1999. Intramolecular excited-state proton transfer and charge transfer fluorescence of a 3-hydroxyflavone derivative in micellar media. Spectrochim Acta Part A 55:903–909.

    Article  Google Scholar 

  73. Do Cabo JL, Faria HB, Portugal SGM, Silva MAA, Brinn IM. 1999. Excited-state acidity of bifunctional compounds, 7: long distance, solvent-assisted excited-state proton transfer in olivacine. Photochem Photobiol 69(6):664–670.

    Article  Google Scholar 

  74. Rampey ME, Halkyard CE, Williams AR, Angel AJ, Hurst DR, Townsend JD, Finefrock AE, Beam CF, Studer-Martinez SL. 1999. A new series of proton/charge transfer molecules: synthesis and spectral studies of 2-(5-aryl-1-carbomethoxy-1H-pyrazol-3-yl)phenols. Photochem Photobiol 70(2):176–183.

    Article  CAS  Google Scholar 

  75. Del Valle JC, Dominguez E, Kasha M. 1999. Competition between dipolar relaxation and double proton transfer in the electronic spec-troscopy of pyrroloquinolines. J Phys Chem A 103:2467–2475.

    Article  Google Scholar 

  76. Chou PT, Chen YC, Yu WS, Chou YH, Wei CY, Cheng YM. 2001. Excited-state intramolecular proton transfer in 10-hydroxybenzo[h]quinoline. J Phys Chem A 105:1731–1740.

    Article  CAS  Google Scholar 

  77. Nagaoka S, Nakamura A, Nagashima U. 2002. Nodal-plane model in excited-state intramolecular proton transfer of o-hydroxybenzalde-hyde; substituent effect. J Photochem Photobiol A: Chem 154(1):23–32.

    Article  CAS  Google Scholar 

  78. Nad S, Pal H. 2001. Unusual photophysical properties of coumarin-151. J Phys Chem A 105(7):1097–1106.

    Article  CAS  Google Scholar 

  79. Singh MK, Pal H, Bhasikuttan AC, Sapre AV. 1998. Dual solva-tochromism of neutral red. Photochem Photobiol 68(1):32–38.

    Article  CAS  Google Scholar 

  80. Sumitani M, Nakashima N, Yoshihara K, Nagakura S. 1977. Temperature dependence of fluorescence lifetimes of trans-stilbene. Chem Phys Lett 51(1):183–185.

    Article  CAS  Google Scholar 

  81. Todd DC, Jean JM, Rosenthal SJ, Ruggiero AJ, Yang D, Fleming GR. 1990. Fluorescence upconversion study of cis-stilbene isomer-ization. J Chem Phys 93(12):8658–8668.

    Article  CAS  Google Scholar 

  82. Meier H. 2001. Blue fluorescent exciplexes consisting of trans-stilbene and antibodies. Angew Chem, Int Ed 40(10):1851–1853.

    Article  CAS  Google Scholar 

  83. Rettig W, Lapouyade R. 1994. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic pho-toreactions. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 109–149. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  84. Iwaki T, Torigoe C, Noji M, Nakanishi M. 1993. Antibodies for fluorescent molecular rotors. Biochemistry 32:7589–7592.

    Article  CAS  Google Scholar 

  85. Haidekker MA, L’Heureux N, Frangos JA. 2000. Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence. Am J Physiol Heart Circ Physiol 278:H1401–H1406.

    CAS  Google Scholar 

  86. Haidekker MA, Ling T, Anglo M, Stevens HY, Frangos JA, Theodorakis EA. 2001. New fluorescent probes for the measurement of cell membrane viscosity. Chem Biol 8:123–131.

    Article  CAS  Google Scholar 

  87. Okamoto A, Ichiba T, Saito I. 2004. Pyrene-labeled oligodeoxynu-cleotide probe for detecting base insertion by excimer fluorescence emission. J Am Chem Soc 126:8364–8365.

    Article  CAS  Google Scholar 

  88. Yamana K, Iwai T, Ohtani Y, Sato S, Nakamura M, Nakano H. 2002. Bis-pyrene-labeled oligonucleotides: sequence specificity of excimer and monomer fluorescence changes upon hybridization with DNA. Bioconjugate Chem 13:1266–1273.

    Article  CAS  Google Scholar 

  89. Wang W, Han JJ, Wang LQ, Li LS, Shaw WJ, Li ADQ. 2003. Dynamic B–B stacked molecular assemblies emit from green to red colors. Nano Lett 3(4):455–458.

    Article  CAS  Google Scholar 

  90. Richieri GV, Ogata RT, Kleinfeld AM. 1992. A fluorescently labeled intestinal fatty acid binding protein. J Biol Chem 267(33):23495– 23501.

    CAS  Google Scholar 

  91. Richieri GV, Anel A, Kleinfeld AM. 1993. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry 32:7574–7580.

    Article  CAS  Google Scholar 

  92. Richieri GV, Ogata RT, Kleinfeld AM. 1996. Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine. J Biol Chem 271(19):11291–11300.

    Article  CAS  Google Scholar 

  93. Richieri GV, Ogata RT, Kleinfeld AM. 1996. Thermodynamic and kinetic properties of fatty acid interactions with rat liver fatty acid-binding protein. J Biol Chem 271(49):31068–31074.

    Article  CAS  Google Scholar 

  94. Richieri GV, Ogata RT, Kleinfeld AM. 1994. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269(39):23918–23930.

    CAS  Google Scholar 

  95. Richieri GV, Kleinfeld AM. 1995. Unbound free fatty acid levels in human serum. J Lipid Res 36:229–240.

    CAS  Google Scholar 

  96. Kleinfeld AM, Prothro D, Brown DL, Davis RC, Richieri GV, DeMaria A. 1996. Increases in serum unbound free fatty acid levels following coronary angioplasty. Am J Cardiol 78:1350–1354.

    Article  CAS  Google Scholar 

  97. LaPorte DC, Wierman BM, Storm DR. 1980. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19:3814–3819.

    Article  CAS  Google Scholar 

  98. Wang Y, Ikeda T, Ikeda H, Ueno A, Toda F. 1994. Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds. Chem Soc Jpn 67:1598–1607.

    Article  CAS  Google Scholar 

  99. Nagata K, Furuike T, Nishimura S-I. 1995. Fluorescence-labeled synthetic glycopolymers: a new type of sugar ligands of lectins. J Biochem 118:278–284.

    CAS  Google Scholar 

  100. BioProbes 25: New Products and Applications. 1997. Molecular Probes Inc. Eugene, OR. May 1997.

    Google Scholar 

  101. Diwu Z, Lu Y, Zhang C, Kalubert DH, Haugland RP. 1997. Fluorescent molecular probes, II: the synthesis, spectral properties and use of fluorescent solvatochromic dapoxylTM dyes. Photochem Photobiol 66:424–431.

    Article  CAS  Google Scholar 

  102. Dapoxyl is a trademark of Molecular Probes Inc.

    Google Scholar 

  103. Gryczynski I, Wiczk W, Lakowicz JR, Johnson ML. 1989. Decay time distribution analysis of Yt-base in benzene-methanol mixtures. J Photochem Photobiol B: Biol 4:159–170.

    Article  CAS  Google Scholar 

  104. Gryczynski I, Wiczk W, Johnson ML, Lakowicz JR. 1988. Lifetime distributions and anisotropy decays of indole fluorescence in cyclo-hexane/ethanol mixtures by frequency-domain fluorometry. Biophys Chem 32:173–185.

    Article  CAS  Google Scholar 

  105. Gryczynski I. Unpublished observations.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Solvent and Environmental Effects. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_6

Download citation

Publish with us

Policies and ethics