Skip to main content

Abstract

Fluorescence sensing of chemical and biochemical analytes is an active area of research.1–8 These efforts are driven by the desire to eliminate the use of radioactive tracers, which are costly to use and dispose of. There is also a need for rapid and low-cost testing methods for a wide range of clinical, bioprocess, and environmental applications. During the past decade numerous methods based on high-sensitivity fluorescence detection have been introduced, including DNA sequencing, DNA fragment analysis, fluorescence staining of gels following electrophoretic separation, and a variety of fluorescence immunoassays. Many of these analytical applications can be traced to the early reports by Undenfriend and coworkers,9 which anticipated many of today's applications of fluorescence. The more recent monographs6–8 have summarized the numerous analytical applications of fluorescence.

Why is fluorescence rather than absorption used for high-sensitivity detection? Fluorescence is more sensitive because of the different ways of measuring absorbance and fluorescence. Light absorbance is measured as the difference in intensity between light passing through the reference and the sample. In fluorescence the intensity is measured directly, without comparison with a reference beam. Consider a 10−10 M solution of a substance with a molar extinction coefficient of 105 M−1 cm−1. The absorbance will be 10−5 per cm, which is equivalent to a percentage transmission of 99.9977%. Even with exceptional optics and electronics, it will be very difficult to detect the small percentage of absorbed light, 0.0023%. Even if the electronics allow measurement of such a low optical density, the cuvettes will show some variability in transmission and surface reflection, which will probably exceed the intensity difference due to an absorbance of 10−5. In contrast, fluorescence detection at 10−10 M is readily accomplished with most fluorometers. This advantage is due to measurement of the fluorescence relative to a dark background, as compared to the bright reference beam in an absorbance meas-urement. It is relatively easy to detect low levels of light, and the electronic impulses due to single photons are measurable with most photomultiplier tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfbeis OS. 2004. Fiber-optic chemical sensors and biosensors. Anal Chem 76:3269–3284.

    Article  CAS  Google Scholar 

  2. Cammann K. 2003. Sensors and analytical chemistry. Phys Chem Chem Phys 5:5159–5168.

    Article  CAS  Google Scholar 

  3. Rich RL, Myszka DG. 2002. Survey of the year 2001 commercial optical biosensor literature. J Mol Recognit 15:352–376.

    Article  CAS  Google Scholar 

  4. de Silva AP, Fox DB, Moody TS, Weir SM. 2001. The development of molecular fluorescent switches. Trends Biotechnol 19(1):29–34.

    Article  Google Scholar 

  5. Badugu R. 2005. Fluorescence sensor design for transition metal ions: the role of the PIET interaction efficiency. J Fluoresc 15(1):71–83.

    Article  CAS  Google Scholar 

  6. Geddes CD, Lakowicz JR, eds. 2005. Topics in fluorescence spec-troscopy, Vol. 9: Advanced concepts in fluorescence sensing: macro-molecular sensing. Springer-Verlag, New York. In press.

    Google Scholar 

  7. Geddes CD, Lakowicz JR, eds. 2005. Topics in fluorescence spec-troscopy, Vol. 10: Advanced concepts in fluorescence sensing: small molecule sensing. Springer-Verlag, New York. In press.

    Google Scholar 

  8. Lakowicz JR, ed. 1994. Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing. Plenum Press, New York.

    Google Scholar 

  9. Undenfriend S. 1969. Fluorescence assay in biology and medicine, Vol 2. Academic Press, New York. (See also Vol. 1. 1962.)

    Google Scholar 

  10. Kricka LJ, Skogerboe KJ, Hage DA, Schoeff L, Wang J, Sokol LJ, Chan DW, Ward KM, Davis KA. 1997. Clinical chemistry. Anal Chem 69:165R–229R.

    Google Scholar 

  11. Burtis CA, Ashwood ER. 1999. Tietz textbook of clinical chemistry. W.B. Saunders, Philadelphia.

    Google Scholar 

  12. Wolfbeis OS. 1991. Biomedical applications of fiber optic chemical sensors. In Fiber optic chemical sensors and biosensors, Vol. 2, pp. 267–300. Ed OS Wolfbeis. CRC Press, Boca Raton, FL.

    Google Scholar 

  13. Szmacinski H, Lakowicz JR. 1994. Lifetime-based sensing. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 295–334. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  14. Kieslinger D, Draxler S, Trznadel K, Lippitsch ME. 1997. Lifetime-based capillary waveguide sensor instrumentation. Sens Actuators B 38–39:300–304.

    Article  Google Scholar 

  15. Lippitsch ME, Draxler S, Kieslinger D. 1997. Luminescence lifetime-based sensing: new materials, new devices. Sens Actuators B 38–39:96–102.

    Article  Google Scholar 

  16. Draxler S. 2005. Lifetime based sensors/sensing. In Topics in fluorescence spectroscopy, Vol. 10: Advanced concepts in fluorescence sensing: small molecule sensing, pp. 241–274. Ed CD Geddes, JR Lakowicz. Springer-Verlag, New York.

    Google Scholar 

  17. Richards-Kortum R, Sevick-Muraca E. 1996. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606.

    Article  CAS  Google Scholar 

  18. Gouin JF, Baros F, Birot D, Andre JC. 1997. A fibre-optic oxygen sensor for oceanography. Sens Actuators B 38–39:401–406.

    Article  Google Scholar 

  19. Valeur B. 1994. Principles of fluorescent probe design for ion recognition. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 21–48. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  20. Rettig W, Lapouyade R. 1994. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic pho-toreactions. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 109–149. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  21. Czarnik AW. 1994. Fluorescent chemosensors for cations, anions, and neural analytes. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 49–70. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  22. Fabbrizzi L, Poggi A. 1995. Sensors and switches from supramolec-ular chemistry. Chem Soc Rev 24:197–202.

    Article  CAS  Google Scholar 

  23. Bryan AJ, Prasanna de Silva A, de Silva SA, Dayasiri Rupasinghe AD, Samankumara Sandanayake KRA. 1989. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors 4:169–179.

    Article  CAS  Google Scholar 

  24. Demas JN, DeGraff BA. 1994. Design and applications of highly luminescent transition metal complexes. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 71–107. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  25. Klimant I, Belser P, Wolfbeis OS. 1994. Novel metal-organic ruthenium (II) diimine complexes for use as longwave excitable luminescent oxygen probes. Talanta 41(6):985–991.

    Article  CAS  Google Scholar 

  26. Demas JN, DeGraff BA, Coleman PB. 1999. Oxygen sensors based on luminescence quenching. Anal Chem News Feat 793A–800A.

    Google Scholar 

  27. Bacon JR, Demas JN. 1987. Determination of oxygen concentrations by luminescence quenching of a polymer immobilized transition metal complex. Anal Chem 59:2780–2785.

    Article  CAS  Google Scholar 

  28. Wolfbeis OS. 1991. Oxygen sensors. In Fiber optic chemical sensors and biosensors, Vol. II, pp. 19–53. Ed OS Wolfbeis. CRC Press, Boca Raton, FL.

    Google Scholar 

  29. Mills A, Williams FC. 1997. Chemical influences on the luminescence of ruthenium diimine complexes and its response to oxygen. Thin Solid Films 306:163–170.

    Article  CAS  Google Scholar 

  30. Lippitsch ME, Pusterhofer J, Leiner MJP, Wolfbeis OS. 1988. Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205:1–6.

    Article  CAS  Google Scholar 

  31. Draxler S, Lippitsch ME, Klimant I, Kraus H, Wolfbeis OS. 1995. Effects of polymer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen. J Phys Chem 99:3162– 3167.

    Article  CAS  Google Scholar 

  32. Simon JA, Curry SL, Schmehl RH, Schatz TR, Piotrowiak P, Jin X, Thummel RP. 1997. Intramolecular electronic energy transfer in ruthenium(II) diimine donor/pyrene acceptor complexes linked by a single C–C bond. J Am Chem Soc 119:11012–11022.

    Article  CAS  Google Scholar 

  33. Lakowicz JR, Johnson ML, Lederer WJ, Szmacinski H, Nowaczyk K, Malak H, Berndt KW. 1992. Fluorescence lifetime sensing generates cellular images. Laser Focus World 28(5):60–80.

    CAS  Google Scholar 

  34. Xu W, Kneas KA, Demas JN, DeGraff BA. 1996. Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation. Anal Chem 68:2605–2609.

    Article  CAS  Google Scholar 

  35. Bambot SB, Rao G, Romauld M, Carter GM, Sipior J, Terpetschnig E, Lakowicz JR. 1995. Sensing oxygen through skin using a red diode laser and fluorescence lifetimes. Biosens Bioelectron 10(6/7):643–652.

    Article  CAS  Google Scholar 

  36. Papkovsky DB, Ponomarev GV, Trettnak W, O’Leary P. 1995. Phosphorescent complexes of porphyrin ketones: optical properties and applications to oxygen sensing. Anal Chem 67:4112–4117.

    Article  CAS  Google Scholar 

  37. Lu X, Han BH, Winnik MA. 2003. Characterizing the quenching process for phosphorescent dyes in poly[((n-butylamino)thionyl)-phosphazene] films. J Phys Chem B 107:13349–13356.

    Article  CAS  Google Scholar 

  38. Trettnak W, Kolle C, Reininger F, Dolezal C, O’Leary P. 1996. Miniaturized luminescence lifetime-based oxygen sensor instrumentation utilizing a phase modulation technique. Sens Actuators B 35–36:506–512.

    Article  Google Scholar 

  39. Kostov Y, Van Houten KA, Harms P, Pilato RS, Rao G. 2000. Unique oxygen analyzer combining a dual emission probe and a low-cost solid-state ratiometric fluorometer. Appl Spectrosc 54(6):864–868.

    Article  CAS  Google Scholar 

  40. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. 1992. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 89:1271–1275.

    Article  CAS  Google Scholar 

  41. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt K, Johnson ML. 1992. Fluorescence lifetime imaging. Anal Biochem 202:316–330.

    Article  CAS  Google Scholar 

  42. Zhong W, Urayama P, Mycek MA. 2003. Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J Phys D App. Phys 36:1689–1695.

    Article  CAS  Google Scholar 

  43. Boas G. 2003. FLIM system measures long-lived, oxygen-sensitive probes. Biophotonics Int, September, pp. 59–60.

    Google Scholar 

  44. Geddes C. 2001. Optical halide sensing using fluorescence quenching: theory, simulations and applications—a review. Meas Sci Tech-nol 12:R53–R88.

    Article  CAS  Google Scholar 

  45. Geddes CD. 2001. Halide sensing using the SPQ molecule. Sens Actuators B 72:188–195.

    Article  Google Scholar 

  46. Illsley NP, Verkman AS. 1987. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.

    Article  CAS  Google Scholar 

  47. Verkman AS. 1990. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol 253:C375– C388.

    Google Scholar 

  48. Verkman AS, Sellers MC, Chao AC, Leung T, Ketcham R. 1989. Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal Biochem 178:355–361.

    Article  CAS  Google Scholar 

  49. Biwersi J, Tulk B, Verkman AS. 1994. Long-wavelength chloridesensitive fluorescent indicators. Anal Biochem 219:139–143.

    Article  CAS  Google Scholar 

  50. Orosz DE, Carlid KD. 1992. A sensitive new fluorescence assay for measuring proton transport across liposomal membranes. Anal Bio-chem 210:7–15.

    Google Scholar 

  51. Chao AC, Dix JA, Sellers MC, Verkman AS. 1989. Fluorescence measurement of chloride transport in monolayer cultured cells: mechanisms of chloride transport in fibroblasts. Biophys J 56:1071–1081.

    Article  CAS  Google Scholar 

  52. Sonawane ND, Thiagarajah JR, Verkman AS. 2002. Chloride concentration in endosomes measured using a ratioable fluorescent Clindicator. J Biol Chem 277(7):5506–5513.

    Article  CAS  Google Scholar 

  53. Jayaraman S, Biwersi J, Verkman AS. 1999. Synthesis and characterization of dual-wavelength Cl sensitive fluorescent indicators for ration imaging. Am J Physiol 276:C747–C751.

    CAS  Google Scholar 

  54. Kaneko H, Putzier I, Frings S, Kaupp UB, Gensch T. 2004. Chloride accumulation in mammalian olfactory sensory neurons. J Neurosci 24(36):7931–7938.

    Article  CAS  Google Scholar 

  55. Wolfbeis OS, Sharma A. 1988. Fibre-optic fluorosensor for sulphur dioxide. Anal Chim Acta 208:53–58.

    Article  CAS  Google Scholar 

  56. Sharma A, Draxler S, Lippitsch ME. 1992. Time-resolved spec-troscopy of the fluorescence quenching of a donor–acceptor pair by halothane Appl Phys. B54:309–312.

    CAS  Google Scholar 

  57. Omann GM, Lakowicz JR. 1982. Interactions of chlorinated hydrocarbons insecticides with membranes. Biochem Biophys Acta 684:83–95.

    Article  CAS  Google Scholar 

  58. Vanderkooi JM, Wright WW, Erecinska M. 1994. Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence. Biochim Biophys Acta 1207:249–254.

    CAS  Google Scholar 

  59. Denicola A, Souza JM, Radi R, Lissi E. 1996. Nitric oxide diffusion in membranes determined by fluorescence quenching. Arch Biochem Biophys 328(1):208–212.

    Article  CAS  Google Scholar 

  60. Franz KJ, Singh N, Lippard SJ. 2000. Metal-based NO sensing by selective ligand dissociation. Angew Chem, Int Ed 39(12):2120– 2122.

    Article  CAS  Google Scholar 

  61. Kojima H, Nagano T. 2000. Fluorescent indicators for nitric oxide. Adv Mater 12(10):763–765.

    Article  CAS  Google Scholar 

  62. Kojima H, Hirotani M, Urano Y, Kikuchi K, Higuchi T, Nagano T. 2000. Fluorescent indicators for nitric oxide based on rhodamine chromophore. Tetrhedron Lett 41:69–72.

    Article  CAS  Google Scholar 

  63. Jordan DM, Walt DR, Milanovich FP. 1987. Physiological pH fiberoptic chemical sensor based on energy transfer. Anal Chem 59:437– 439.

    Article  CAS  Google Scholar 

  64. Lakowicz JR, Szmacinski H, Karakelle M. 1993. Optical sensing of pH and pCO2 using phase-modulation fluorimetry and resonance energy transfer. Anal Chim Acta 272:179–186.

    Article  CAS  Google Scholar 

  65. Sipior J, Bambot S, Romauld M, Carter GM, Lakowicz JR, Rao G. 1995. A lifetime-based optical CO2 gas sensor with blue or red excitation and Stokes or anti-Stokes detection. Anal Biochem 227:309–318.

    Article  CAS  Google Scholar 

  66. Chang Q, Randers-Eichhorn L, Lakowicz JR, Rao G. 1998. Steam-sterilizable, fluorescence lifetime-based sensing film for dissolved carbon dioxide. Biotechnol Prog 14:326–331.

    Article  Google Scholar 

  67. Neurauter G, Klimant I, Wolfbeis OS. 1999. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal Chim Acta 382:67–75.

    Article  CAS  Google Scholar 

  68. Marazuela MD, Moreno-bondi MC, Orellana G. 1998. Luminescence lifetime quenching of a ruthenium(II) polypyridyl dye for optical sensing of carbon dioxide. Appl Spectrosc 52(10):1314–1320.

    Article  CAS  Google Scholar 

  69. von Bultzingslowen C, McEvoy AK, McDonagh C, MacCraith BD. 2003. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer. Anal Chim Acta 480:275–283.

    Article  CAS  Google Scholar 

  70. Preininger C, Ludwig M, Mohr GJ. 1998. Effect of the sol-gel matrix on the performance of ammonia fluorosensors based on energy transfer. J Fluoresc 8(3):199–205.

    Article  CAS  Google Scholar 

  71. Mohr GJ, Draxler S, Trznadel K, Lehmann F, Lippitsch ME. 1998. Synthesis and characterization of fluorophore–absorber pairs for sensing of ammonia based on fluorescence. Anal Chim Acta 360:119–128.

    Article  CAS  Google Scholar 

  72. Chang Q, Sipior J, Lakowicz JR, Rao G. 1995. A lifetime-based fluorescence resonance energy transfer sensor for ammonia. Anal Biochem 232:92–97.

    Article  CAS  Google Scholar 

  73. Wolfbeis OS, Klimant I, Werner T, Huber C, Kosch U, Krause C, Neurauter G, Durkop A. 1998. Set of luminescence decay time based chemical sensors for clinical appointments. Sens Actuators B51:17–24.

    CAS  Google Scholar 

  74. Mills A, Chang Q, McMurray N. 1992. Equilibrium studies on col-orimetric plastic film sensors for carbon dioxide. Anal Chem 64:1383–1389.

    Article  CAS  Google Scholar 

  75. Wolfbeis OS, Reisfeld R, Oehme I. 1996. Sol-gels and chemical sensors. Struct Bonding 85:51–98.

    Article  CAS  Google Scholar 

  76. Avnir D, Braun S, Ottolenghi M. 1992. A review of novel photoactive, optical, sensing and bioactive materials. ACS Symp Ser 499:384–404.

    Article  CAS  Google Scholar 

  77. The Diabetes Control and Complications Trial Research Group. 1993. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New Engl J Med 329(14):977–986.

    Article  Google Scholar 

  78. Lakowicz JR. 1994. Emerging biomedical applications of time-resolved fluorescence spectroscopy. In Topics in fluorescence spec-troscopy, Vol. 4: Probe design and chemical sensing, pp. 1–9. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  79. Schultz JS, Sims G. 1979. Affinity sensors for individual metabolites. Biotechnol Bioeng Symp 9:65–71.

    Google Scholar 

  80. Schultz J, Mansouri S, Goldstein IJ. 1982. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites. Diabetes Care 5(3):245–253.

    Article  CAS  Google Scholar 

  81. Meadows D, Schultz JS. 1988. Fiber-optic biosensors based on fluorescence energy transfer. Talanta 35(2):145–150.

    Article  CAS  Google Scholar 

  82. Lakowicz JR, Maliwal BP. 1993. Optical sensing of glucose using phase-modulation fluorometry. Anal Chim Acta 271:155–164.

    Article  Google Scholar 

  83. Tolosa L, Szmacinski H, Rao G, Lakowicz JR. 1997. Lifetime-based sensing of glucose using energy transfer with a long lifetime donor. Anal Biochem 250:102–108.

    Article  CAS  Google Scholar 

  84. Tolosa L, Malak H, Rao G, Lakowicz JR. 1997. Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5TM. Sens Actuators B 45:93–99.

    Article  Google Scholar 

  85. He H, Li H, Mohr G, Kovacs B, Werner T, Wolfbeis OS. 1993. Novel type of ion-selective fluorosensor based on the inner filter effect: an optrode for potassium. Anal Chem 65:123–127.

    Article  CAS  Google Scholar 

  86. Roe JN, Szoka FC, Verkman AS. 1989. Optical measurement of aqueous potassium concentration by a hydrophobic indicator in lipid vesicles. Biophys Chem 33:295–302.

    Article  CAS  Google Scholar 

  87. Roe JN, Szoka FC, Verkman AS. 1990. Fibre optic sensor for the detection of potassium using fluorescence energy transfer. Analyst 115:353–368.

    Article  CAS  Google Scholar 

  88. Mahutte CK. 1994. Continuous intra-arterial blood gas monitoring. Intensive Care Med 20:85–86.

    Article  CAS  Google Scholar 

  89. Shapiro BA, Mahutte CK, Cane RD, Gilmour IJ. 1993. Clinical performance of a blood gas monitor: a prospective, multicenter trial. Crit Care Med 21(4):487–494.

    Article  CAS  Google Scholar 

  90. Yafuso M, Arick SA, Hansmann D, Holody M, Miller WW, Yan CF, Mahutte K. 1989. Optical pH measurements in blood. Proc SPIE 1067:37–43.

    Google Scholar 

  91. Vurek GG, Feustel PJ, Severinghaus JW. 1983. A fiber optic pCO2sensor. Ann Biomed Eng. 11:499–510.

    Article  CAS  Google Scholar 

  92. Mahutte CK, Holody M, Maxwell TP, Chen PA, Sasse SA. 1994. Development of a patient-dedicated, on-demand, blood gas monitor. Am J Respir Crit Care Med 149:852–859.

    CAS  Google Scholar 

  93. Mahutte CK, Sasse SA, Chen PA, Holody M. 1994. Performance of a patient-dedicated, on-demand blood gas monitor in medical ICU patients. Am J Respir Crit Care Med 150:865–869.

    CAS  Google Scholar 

  94. Opitz N, Lubbers DW. 1987. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes. Int Anesthesiol Clin 25(3):177–197.

    Article  CAS  Google Scholar 

  95. Ohkuma S, Poole B. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 5(7):3327–3331.

    Article  Google Scholar 

  96. Thomas JA, Buchsbaum RN, Zimniak A, Racker E. 1979. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210– 2218.

    Article  CAS  Google Scholar 

  97. Munkholm C, Walt DR, Milanovich FP. 1988. A fiber-optic sensor for CO2 measurement. Talanta 35(2):109–112.

    Article  CAS  Google Scholar 

  98. Kawabata Y, Kamichika T, Imasaka T, Ishibashi N. 1989. Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(eth-yleneglycol) membrane. Anal Chim Acta 219:223–229.

    Article  CAS  Google Scholar 

  99. Yguerabide J, Talavera E, Alvarez JM, Quintero B. 1994. Steady-state fluorescence method for evaluating excited state proton reactions: application to fluorescein. Photochem Photobiol 60(5):435–441.

    Article  CAS  Google Scholar 

  100. Haugland RP. 1996. Handbook of fluorescent probes and research chemicals. Molecular Probes Inc., Eugene, OR. (See Chapter 23, pp. 551–561.)

    Google Scholar 

  101. Sjoback R, Nygren J, Kubista M. 1995. Absorption and fluorescence properties of fluorescein. Spectrochim Acta Part A 51:L7–L21.

    Article  Google Scholar 

  102. Choi MMF. 1998. Spectroscopic behavior and proteolytic equilibrium of fluorescein immobilized in ethyl cellulose. J Photochem Photobiol A: Chem 114:235–239.

    Article  CAS  Google Scholar 

  103. Rink TJ, Tsien RY, Pozzan T. 1982. Cytoplasmic pH and free Mg2+in lymphocytes. J Cell Biol 95:189–196.

    Article  CAS  Google Scholar 

  104. Clement NR, Gould JM. 1981. Pyranine (8-hydroxy-1,3,6-pyren-etrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry 20:1534–1538.

    Article  CAS  Google Scholar 

  105. Wolfbeis OS, Fürlinger E, Kroneis H, Marsoner H. 1983. Fluori-metric analysis, 1: a study on fluorescent indicators for measuring near neutral ("Physiological") pH-values. Fresenius Z Anal Chem 314:119–124.

    Article  CAS  Google Scholar 

  106. Schulman SG, Chen S, Bai F, Leiner MJP, Weis L, Wolfbeis OS. 1995. Dependence of the fluorescence of immobilized 1-hydrox-ypyrene-3,6,8-trisulfonate on sodium pH: extension of the range of applicability of a pH fluorosensor. Anal Chim Acta 304:165–170.

    Article  CAS  Google Scholar 

  107. Zhujun H, Seitz WR. 1984. A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal Chim Acta 160:47–55.

    Article  Google Scholar 

  108. Uttamlal M, Walt DR. 1995. A fiber-optic carbon dioxide sensor for fermentation monitoring. BioTechnology 13:597–601.

    Article  CAS  Google Scholar 

  109. Whitaker JE, Haugland RP, Prendergast FG. 1991. Spectral and pho-tophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344.

    Article  CAS  Google Scholar 

  110. Szmacinski H, Lakowicz JR. 1993. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem 65:1668–1674.

    Article  CAS  Google Scholar 

  111. Srivastava A, Krishnamoorthy G. 1997. Time-resolved fluorescence microscopy could correct for probe binding while estimating intra-cellular pH. Anal Biochem 249:140–146.

    Article  CAS  Google Scholar 

  112. Liu J, Diwu Z, Leung W Y. 2001. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorgan Med Chem Lett 11:2903–2905.

    Article  CAS  Google Scholar 

  113. Adamczyk M, Grote J. 2003. Synthesis of probes with broad pH range fluorescence. Bioorgan Med Chem Lett 13:2327–2330.

    Article  CAS  Google Scholar 

  114. Budisa N, Rubini M, Bae JH, Weyher E, Wenger W, Golbik R, Huber R, Moroder L. 2002. Global replacement of tryptophan with amino-tryptophans generates non-invasive protein-based optical pH sensors. Angew Chem, Int Ed 41(21):4066–4069.

    Article  CAS  Google Scholar 

  115. Kermis HR, Kostov Y, Harms P, Rao G. 2002. Dual excitation ratio-metric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application. Biotechnol Prog 18:1047–1053.

    Article  CAS  Google Scholar 

  116. Bernhard DD, Mall S, Pantano P. 2001. Fabrication and characterization of microwell array chemical sensors. Anal Chem 73:2484–2490.

    Article  CAS  Google Scholar 

  117. Liebsch G, Klimant I, Krause C, Wolfbeis OS. 2001. Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363.

    Article  CAS  Google Scholar 

  118. Wolfbeis OS, Rodriguez NV, Werner T. 1992. LED-compatible fluo-rosensor for measurement of near-neutral pH values. Mikrochim Acta 108:133–141.

    CAS  Google Scholar 

  119. Briggs MS, Burns DD, Cooper ME, Gregory SJ. 2000. A pH-sensitive fluorescent cyanine dye for biological application. Chem Commun 2323–2324.

    Google Scholar 

  120. Zen J-M, Patonay G. 1991. Near-infrared fluorescence probe for pH determination. Anal Chem 63:2934–2938.

    Article  CAS  Google Scholar 

  121. Boyer AE, Devanathan S, Hamilton D, Patonay G. 1992. Spec-troscopic studies of a near-infrared absorbing pH-sensitive carbocya-nine dye. Talanta 39(5):505–510.

    Article  CAS  Google Scholar 

  122. Wolfbeis OS, Marhold H. 1987. A new group of fluorescent pH-indi-cators for an extended pH-range. Anal Chem 327:347–350.

    Article  CAS  Google Scholar 

  123. Murtaza Z, Chang Q, Rao G, Lin H, Lakowicz JR. 1997. Long-lifetime metal–ligand pH probes. Anal Biochem 247:216–222.

    Article  CAS  Google Scholar 

  124. deSilva AP, Nimal Gunaratne HQ, Rice TE. 1996. Proton-controlled switching of luminescence in lanthanide complexes in aqueous solution: pH sensors based on long-lived emission. Angew Chem, Int Ed Engl 35:2116–2118.

    Article  Google Scholar 

  125. Kubo K, Sakurai T. 2000. Molecular recognition of PET fluo-roionophores. Heterocycles 52(2):945–976.

    Article  CAS  Google Scholar 

  126. Bryan AJ, de Silva P, de Silva SA, Rupasinghe RADD, Sandanayake KRAS. 1989. Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors 4:169–179.

    Article  CAS  Google Scholar 

  127. de Silva AP, Gunaratne HQN, Habib-Jiwan J-L, McCoy CP, Rice TE, Soumillion J-P. 1995. New fluorescent model compounds for the study of photoinduced electron transfer: the influence of a molecular electric field in the excited state. Angew Chem, Int Ed Engl 34:1728–1731.

    Article  Google Scholar 

  128. Kubo K. 2005. PET sensors. In Topics in fluorescence spectroscopy, Vol. 9: Advanced concepts in fluorescence sensing: macromolecular sensing, pp. 219–247. Ed CD Geddes, JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  129. Akkaya EU, Huston ME, Czarnik AW. 1990. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J Am Chem Soc 112:3590–3593.

    Article  CAS  Google Scholar 

  130. Fages F, Desvergne JP, Bouas-Laurent H, Marsau P, Lehn J-M, Kotzyba-Hibert F, Albrecht-Gary A-M, Al-Joubbeh M. 1989. Anthraceno-cryptands: A new class of cation-complexing macrobi-cyclic fluorophores. J Am Chem Soc 111:8672–8680.

    Article  CAS  Google Scholar 

  131. de Silva AP, de Silva SA. 1986. Fluorescent signalling crown ethers; "switching on" of fluorescence by alkali metal ion recognition and binding in situ. J Chem Soc Chem Commun 1709–1710.

    Google Scholar 

  132. Gunnlaugsson T, Davis AP, Glynn M. 2001. Fluorescent photoin-duced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chem Commun 2556–2557.

    Google Scholar 

  133. Snowden TS, Anslyn EV. 1999. Anion recognition: synthetic receptors for anions and their application in sensors. Curr Opin Chem Biol 3:740–746.

    Article  CAS  Google Scholar 

  134. Huston ME, Akkaya EU, Czarnik AW. 1989. Chelation enhanced fluorescence detection of non-metal ions. J Am Chem Soc 111:8735– 8737.

    Article  CAS  Google Scholar 

  135. Beer PD, Gale PA. 2001. Anion recognition and sensing: the state of the art and future perspectives. Angew Chem, Int Ed 40:487–516.

    Article  Google Scholar 

  136. Metzger A, Anslyn E V. 1998. A chemosensor for citrate in beverages. Angew Chem, Int Ed 37(5):649–652.

    Article  CAS  Google Scholar 

  137. Pederson CJ. 1967. Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036.

    Article  Google Scholar 

  138. Cram DJ. 1988. The design of molecular hosts, guests, and their complexes. Science 240:760–767.

    Article  CAS  Google Scholar 

  139. Pederson CJ. 1988. The discovery of crown ethers. Science 241:536–540.

    Article  Google Scholar 

  140. Nuccitelli R, ed. 1994. Methods in cell biology, Vol. 40: A practical guide to the study of calcium in living cells. Academic Press, New York.

    Google Scholar 

  141. Minta A, Tsien RY. 1989. Fluorescent indicators for cytosolic sodium. J Biol Chem 264(32):19449–19457.

    CAS  Google Scholar 

  142. Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450.

    CAS  Google Scholar 

  143. Tsien RY. 1989. Fluorescent indicators of ion concentrations. Methods Cell Biol 30:127–156.

    Article  CAS  Google Scholar 

  144. Haugland RP. 1996. Handbook of Fluorescent Probes and Research Chemicals, 6th ed., pp. 503–584. Molecular Probes Inc., Eugene, OR.

    Google Scholar 

  145. Crossley R, Goolamali Z, Sammes PG. 1994. Synthesis and properties of a potential extracellular fluorescent probe for potassium. J Chem Soc Perkin Trans 2:1615–1623.

    Google Scholar 

  146. Buet P, Gersch B, Grell E. 2001. Spectral properties, cation selectivity, and dynamic efficiency of fluorescent alkali ion indicators in aqueous solution around neutral pH. J Fluoresc 11(2):79–87.

    Article  CAS  Google Scholar 

  147. Szmacinski H, Lakowicz JR. 1999. Potassium and sodium measurements in blood using phase-modulation fluorometry. Sens Actuators B 60:8–18.

    Article  Google Scholar 

  148. Leray I, Habib-Jiwan JL, Branger C, Soumillion JPh, Valeur B. 2000. Ion-responsive fluorescent compounds, VI: coumarin 153 linked to rigid crowns for improvement of selectivity. J Photochem Photobiol A: Chem 135:163–169.

    Article  CAS  Google Scholar 

  149. Crossley R, Goolamali Z, Gosper JJ, Sammes PG. 1994. Synthesis and spectral properties of new fluorescent probes for potassium. J Chem Soc Perkin Trans 2:513–520.

    Google Scholar 

  150. Golchini K, Mackovic-Basic M, Gharib SA, Masilamani D, Lucas ME, Kurtz I. 1990. Synthesis and characterization of a new fluorescent probe for measuring potassium. Am J Physiol, 258:F438–F443.

    CAS  Google Scholar 

  151. Szmacinski H, Lakowicz JR. 1997. Sodium Green as a probe for intracellular sodium imaging based on fluorescence lifetime. Anal Biochem 250:131–138.

    Article  CAS  Google Scholar 

  152. Lakowicz JR, Szmacinski H. 1992. Fluorescence lifetime-based sensing of pH, Ca2+, K+ and glucose. Sens Actuators B 11:133–143.

    Article  Google Scholar 

  153. Meuwis K, Boens N, De Schryver FC, Gallay J, Vincent M. 1995. Photophysics of the fluorescent K+ indicator PBFI. Biophys J 68:2469–2473.

    Article  CAS  Google Scholar 

  154. Valeur B, Bourson J, Pouget J. 1993. Ion recognition detected by changes in photoinduced charge or energy transfer. ACS Symp Ser 538:25–44.

    Article  CAS  Google Scholar 

  155. Tsien RY, Rink TJ, Poenie M. 1985. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths. Cell Calcium 6:145–157.

    Article  CAS  Google Scholar 

  156. Iatridou H, Foukaraki E, Kuhn MA, Marcus EM, Haugland RP, Katerinopoulos HE. 1994. The development of a new family of intra-cellular calcium probes. Cell Calcium 15:190–198.

    Article  CAS  Google Scholar 

  157. Akkaya EU, Lakowicz JR. 1993. Styryl-based wavelength ratiomet-ric probes: a new class of fluorescent calcium probes with long wavelength emission and a large Stokes shift. Anal Biochem 213:285–289.

    Article  CAS  Google Scholar 

  158. Minta A, Kao JPY, Tsien RY. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromo-phores. J Biol Chem 264(14):8171–8178.

    CAS  Google Scholar 

  159. Eberhard M, Erne P. 1991. Calcium binding to fluorescent calcium indicators: calcium green, calcium orange and calcium crimson. Biochem Biophy Res Comm 180(1):209–215.

    Article  CAS  Google Scholar 

  160. Lakowicz JR, Szmacinski H, Johnson ML. 1992. Calcium concentration imaging using fluorescence lifetimes and long-wavelength probes. J Fluoresc 2(1):47–62.

    Article  CAS  Google Scholar 

  161. Hirshfield KM, Toptygin D, Packard BS, Brand L. 1993. Dynamic fluorescence measurements of two-state systems: applications to cal-cium-chelating probes. Anal Biochem 209:209–218.

    Article  CAS  Google Scholar 

  162. Miyoshi N, Hara K, Kimura S, Nakanishi K, Fukuda M. 1991. A new method of determining intracellular free Ca2+ concentration using Quin-2 fluorescence. Photochem Photobiol 53(3):415–418.

    Article  CAS  Google Scholar 

  163. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. 1992. Fluorescence lifetime imaging of calcium using Quin-2. Cell Calcium 13:131–147.

    Article  CAS  Google Scholar 

  164. Oguz U, Akkaya EU. 1997. One-pot synthesis of a red-fluorescent chemosensor from an azacrown, phloroglucinol and squaric acid: a simple in-solution construction of a functional molecular device. Tetrahedron Lett 38(25):4509–4512.

    Article  CAS  Google Scholar 

  165. Akkaya EU, Turkyilmaz S. 1997. A squaraine-based near IR fluorescent chemosensor for calcium. Tetrahedron Lett 38(25):4513–4516.

    Article  CAS  Google Scholar 

  166. Wahl M, Lucherini MJ, Gruenstein E. 1990. Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium 11:487–500.

    Article  CAS  Google Scholar 

  167. Groden DL, Guan Z, Stokes BT. 1991. Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength. Cell Calcium 12:279–287.

    Article  CAS  Google Scholar 

  168. David-Dufilho M, Montenay-Garestier T, Devynck M-A. 1989. Fluorescence measurements of free Ca2+ concentration in human ery-throcytes using the Ca2+ indicator Fura-2. Cell Calcium 9:167–179.

    Article  Google Scholar 

  169. Hirshfield KM, Toptygin D, Grandhige G, Kim H, Packard BZ, Brand L. 1996. Steady-state and time-resolved fluorescence measurements for studying molecular interactions: interaction of a calcium-binding probe with proteins. Biophys Chem 62:25–38.

    Article  CAS  Google Scholar 

  170. Kao JPY. 1994. Practical aspects of measuring [Ca2+] with fluorescent indicators. Methods Cell Biol 40:155–181.

    Article  CAS  Google Scholar 

  171. SJ, Wiegmann TB, Welling LW, Chronwall BM. 1994. Rapid simultaneous estimation of intracellular calcium and pH. Methods Cell Biol 40:183–220.

    Article  CAS  Google Scholar 

  172. Scanlon M, Williams DA, Fay FS. 1987. A Ca2+-insensitive form of fura-2 associated with polymorphonuclear leukocytes. J Biol Chem 262(13):6308–6312.

    CAS  Google Scholar 

  173. Bourson J, Pouget J, Valeur B. 1993. Ion-responsive fluorescent compounds, 4: effect of cation bonding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J Phys Chem 97:4552–4557.

    Article  CAS  Google Scholar 

  174. Dumon P, Jonusauskas G, Dupuy F, Pee P, Rulliere C, Letard JF, Lapouyade R. 1994. Picosecond dynamics of cation-macrocycle interactions in the excited state of an intrinsic fluorescence probe: the calcium complex of 4-(N-monoaza-15-crown-5)-4'-phenylstilbene. J Phys Chem 98:10391–10396.

    Article  CAS  Google Scholar 

  175. Letard J-F, Lapouyade R, Rettig W. 1993. Chemical engineering of fluorescence dyes. Mol Cryst Liq Cryst 236:41–46.

    Article  CAS  Google Scholar 

  176. Suzuki Y, Komatsu H, Ikeda T, Saito N, Araki S, Citterio D, Hisamoto H, Kitamura Y, Kubota T, Nakagawa J, Oka K, Suzuki K. 2002. Design and synthesis of Mg2+ selective fluoroionophores based on a coumarin derivative and application for Mg2+ measurement in a living cell. Anal Chem 74:1423–1428.

    Article  CAS  Google Scholar 

  177. Watanabe S, Ikishima S, Matsuo T, Yoshida K. 2001. A luminescent metalloreceptor exhibiting remarkably high selectivity for Mg2+ over Ca2+. J Am Chem Soc 123:8402–8403.

    Article  CAS  Google Scholar 

  178. de Silva AP, Nimal Qunaratne HQ, Maguire GEM. 1994. Off-on fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photo-ionic OR logic gates. J Chem Soc Chem Commun 1213–1214.

    Google Scholar 

  179. Pesco J, Salmon JM, Vigo J, Viallet P. 2001. Mag-indo1 affinity for Ca2+, compartmentalization and binding to proteins: the challenge of measuring Mg2+ concentrations in living cells. Anal Biochem 290:221–231.

    Article  CAS  Google Scholar 

  180. Illner H, McGuigan JAS, Luthi D. 1992. Evaluation of mag-fura-5: the new fluorescent indicator for free magnesium measurements. Eur J Physiol 422:179–184.

    Article  CAS  Google Scholar 

  181. Morelle B, Salmon J-M, Vigo J, Viallet P. 1993. Proton, Mg2+ and protein as competing ligands for the fluorescent probe, mag-indo-1: a first step to the quantification of intracellular Mg2+ concentration. Photochem Photobiol 58(6):795–802.

    Article  CAS  Google Scholar 

  182. Otten PA, London RE, Levy LA. 2001. A new approach to the synthesis of APTRA indicators. Bioconjugate Chem 12:76–83.

    Article  CAS  Google Scholar 

  183. Shoda T, Kikuchi K, Kojima H, Urano Y, Komatsu H, Suzuki K, Nagano T. 2003. Development of selective, visible light-excitable, fluorescent magnesium ion probes with a novel fluorescence switching mechanism. Analyst 128(6):719–723.

    Article  CAS  Google Scholar 

  184. Szmacinski H, Lakowicz JR. 1996. Fluorescence lifetime characterization of magnesium probes: Improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry. J Fluoresc 6(2):83–95.

    Article  CAS  Google Scholar 

  185. Thompson RB, Peterson D, Mahoney W, Cramer M, Maliwal BP, Suh SW, Frederickson C, Fierke C, Herman P. 2002. Fluorescent zinc indicators for neurobiology. J Neurosci Methods 118:63–75.

    Article  CAS  Google Scholar 

  186. Walkup GK, Burdette SC, Lippard SJ, Tsien RY. 2000. A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122:5644– 5645.

    Article  CAS  Google Scholar 

  187. Burdette SC, Frederickson CJ, Bu W, Lippard SJ. 2003. ZP4: an improved neuronal Zn2+ sensor of the zinpyr family. J Am Chem Soc 125:1778–1787.

    Article  CAS  Google Scholar 

  188. Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJ. 2001. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841.

    Article  CAS  Google Scholar 

  189. Nolan EM, Burdette SC, Harvey JH, Hilderbrand SA, Lippard SJ. 2004. Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform. Inorg Chem 43:2624–2635.

    Article  CAS  Google Scholar 

  190. Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K. 1998. Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a "reagentless" enzyme transducer. Anal Chem 70:4717–4723.

    Article  CAS  Google Scholar 

  191. Thompson RB, Cramer ML, Bozym R, Fierke CA. 2002. Excitation ratiometric fluorescent biosensor for zinc ion at picomolar levels. J Biomed Opt 7(4):555–560.

    Article  CAS  Google Scholar 

  192. Kawanishi T, Romey MA, Zhu PC, Holody MZ, Shinkai S. 2004. A study of boronic acid based fluorescence glucose sensors. J Fluoresc 14(5):499–512.

    Article  CAS  Google Scholar 

  193. Cao H, Heagy MD. 2004. Fluorescent chemosensors for carbohydrates: a decade's worth of bright spies for saccharides in review. J Fluoresc 14(5):569–584.

    Article  CAS  Google Scholar 

  194. James TD, Sandanayake KRAS, Shinkai S. 1994. Novel photoin-duced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J Chem Soc Chem Commun 2:477– 478.

    Article  Google Scholar 

  195. Yoon J, Czarnik AW. 1992. Fluorescent chemosensors of carbohydrates: a means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching. J Am Chem Soc 114:5874–5875.

    Article  CAS  Google Scholar 

  196. DiCesare N, Lakowicz JR. 2001. Evaluation of two synthetic glucose probes for fluorescence-lifetime-based sensing. Anal Biochem 294:154–160.

    Article  CAS  Google Scholar 

  197. DiCesare N, Lakowicz JR. 2001. Wavelength-ratiometric probes for saccharides based on donor-acceptor diphenylpolyenes. J Photochem Photobiol A: Chem 143:39–47.

    Article  Google Scholar 

  198. DiCesare N, Lakowicz JR. 2001. A new highly fluorescent probe for monosaccharides based on a donor-acceptor diphenyloxazole. Chem Commun 19:2022–2023.

    Article  CAS  Google Scholar 

  199. DiCesare N, Lakowicz JR. 2002. Charge transfer fluorescent probes using boronic acids for monosaccharide signaling. J Biomed Opt 7(4):538–545.

    Article  CAS  Google Scholar 

  200. DiCesare N, Lakowicz JR. 2001. Spectral properties of fluorophores combining the boronic acid group with electron donor or withdraw ing groups: implication in the development of fluorescence probes for saccharides. J Phys Chem A 105:6834–6840.

    Article  CAS  Google Scholar 

  201. Badugu R, Lakowicz JR, Geddes CD. 2005. Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquino-linium heterocyclic nucleus: progress toward noninvasive and continuous glucose monitoring. Bioorg Med Chem 13:113–119.

    Article  CAS  Google Scholar 

  202. Badugu R, Lakowicz JR, Geddes CD. 2005. Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics. Talanta 65:762–768.

    Article  CAS  Google Scholar 

  203. Hellinga HW, Marvin JS. 1998. Protein engineering and the development of generic biosensors. Trends Biotechnol 16:183–189.

    Article  CAS  Google Scholar 

  204. Sloan DJ, Hellinga HW. 1998. Structure-based engineering of environmentally sensitive fluorophores for monitoring protein-protein interactions. Protein Eng 11(9):819–823.

    Article  CAS  Google Scholar 

  205. Thompson RB, Maliwal BP, Fierke CA. 1999. Selectivity and sensitivity of fluorescence lifetime-based metal ion biosensing using a carbonic anhydrase transducer. Anal Biochem 267:185–195.

    Article  CAS  Google Scholar 

  206. Brennan JD. 1999. Preparation and entrapment of fluorescently labeled proteins for the development of reagentless optical biosensors. J Fluoresc 9(4):295–312.

    Article  CAS  Google Scholar 

  207. Giuliano KA, Taylor DL. 1998. Fluorescent-protein biosensors: new tools for drug discovery. Trends Biotechnol 16:135–140.

    Article  CAS  Google Scholar 

  208. Shrestha S, Salins LLE, Ensor CM, Daunert S. 2002. Rationally designed fluorescently labeled sulfate-binding protein mutants: evaluation in the development of a sensing system for sulfate. Biotechnol Bioeng 78(5):517–526.

    Article  CAS  Google Scholar 

  209. Nguyen T, Rosenzweig Z. 2002. Calcium ion fluorescence detection using liposomes containing alexa-labeled calmodulin. Anal Bioanal Chem 374:69–74.

    Article  CAS  Google Scholar 

  210. Marvin JS, Hellinga HW. 1998. Engineering biosensors by introducing fluorescent allosteric signal transducers: construction of a novel glucose sensor. J Am Chem Soc 120:7–11.

    Article  CAS  Google Scholar 

  211. Gilardi G, Zhou LQ, Hibbert L, Cass AEG. 1994. Engineering the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66:3840–3847.

    Article  CAS  Google Scholar 

  212. Tolosa L, Gryczynski I, Eichhorn LR, Dattelbaum JD, Castellano FN, Rao G, Lakowicz JR. 1999. Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 267:114–120.

    Article  CAS  Google Scholar 

  213. Marvin JS, Corcoran EE, Hattangadi NA, Zhang JV, Gere SA, Hellinga HW. 1997. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci USA 94:4366–4371.

    Article  CAS  Google Scholar 

  214. Brune M, Hunter JL, Howell SA, Martin SR, Hazlett TL, Corrie JET, Webb MR. 1998. Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380.

    Article  CAS  Google Scholar 

  215. Lundgren JS, Salins LLE, Kaneva I, Daunert S. 1999. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein. Anal Chem 71:589–595.

    Article  CAS  Google Scholar 

  216. Wada A, Mie M, Aizawa M, Lahoud P, Cass AEG, Kobatake E. 2003. Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagent-less fluorescence sensing devices. J Am Chem Soc 125:16228– 16234.

    Article  CAS  Google Scholar 

  217. Looger LL, Dwyer MA, Smith JJ, Hellinga HW. 2003. Computational design of receptor and sensor proteins with novel functions. Nature 423:185–190.

    Article  CAS  Google Scholar 

  218. Morii T, Sugimoto K, Makino K, Otsuka M, Imoto K, Mori Y. 2002. A new fluorescent biosensor for inositol trisphosphate. J Am Chem Soc 124(7):1138–1139.

    Article  CAS  Google Scholar 

  219. Quiocho FA, Ledvina PS. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20(1):17–25.

    Article  CAS  Google Scholar 

  220. Medintz IL, Anderson GP, Lassman ME, Goldman ER, Bettencourt LA, Mauro JM. 2004. General strategy for biosensor design and construction employing multifunctional surface-tethered components. Anal Chem 76:5620–5629.

    Article  CAS  Google Scholar 

  221. Wenck A, Pugieux C, Turner M, Dunn M, Stacy C, Tiozzo A, Dunder E, van Grinsven E, Khan R, Sigareva M, Wang WC, Reed J, Drayton P, Oliver D, Trafford H, Legris G, Rushton H, Tayab S, Launis K, Chang YF, Chen DF, Melchers L. 2003. Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22:244–251.

    Article  CAS  Google Scholar 

  222. Romoser VA, Hinkle PM, Persechini A. 1997. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence: a new class of fluorescent indicators. J Biol Chem 272(20):13270–13274.

    Article  CAS  Google Scholar 

  223. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887.

    Article  CAS  Google Scholar 

  224. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101(29):10554–10559.

    Article  CAS  Google Scholar 

  225. Sato M, Ozawa T, Inukai K, Asano T, Umezawa Y. 2002. Fluorescent indicators for imaging protein phosphorylation in single living cells. Nature Biotechnol 20:287–294.

    Article  CAS  Google Scholar 

  226. Kawai Y, Sato M, Umezawa Y. 2004. Single color fluorescent indicators of protein phosphorylation for multicolor imaging of intracellu-lar signal flow dynamics. Anal Chem 76:6144–6149.

    Article  CAS  Google Scholar 

  227. Lin CW, Jao CY, Ting AY. 2004. Genetically encoded fluorescent reporters of histone methylation in living cells. J Am Chem Soc 126:5982–5983.

    Article  CAS  Google Scholar 

  228. Kalab P, Weis K, Heald R. 2002. Visualization of a ran-GTP gradient in interphase and mitotic xenopus egg extracts. Science 295:2452–2456.

    Article  CAS  Google Scholar 

  229. Schleifenbaum A, Stier G, Gasch A, Sattler R, Schultz C. 2004. Genetically encoded FRET probe for PKC activity based on pleck-strin. J Am Chem Soc 126:11786–11787.

    Article  CAS  Google Scholar 

  230. Sato M, Hida N, Ozawa T, Umezawa Y. 2000. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iá and green fluorescent proteins. Anal Chem 72:5918–5924.

    Article  CAS  Google Scholar 

  231. Cano Abad MF, Di Benedetto G, Magalhaes PJ, Filippin L, Pozzan T. 2004. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. Biol Chem 279(12):11521–11529.

    Article  CAS  Google Scholar 

  232. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. 1998. Measurement of cytosolic, mitochondrial, and golgi pH in sin gle living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808.

    Article  CAS  Google Scholar 

  233. Kneen M, Farinas J, Li Y, Verkman AS. 1998. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599.

    Article  CAS  Google Scholar 

  234. Elsliger MA, Wachter RM, Hanson GT, Kallio K, Remington SJ. 1999. Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38:5296–5301.

    Article  CAS  Google Scholar 

  235. Hanson GT, McAnaney TB, Park ES, Rendell MEP, Yarbrough DK, Chu S, Xi L, Boxer SG, Montrose MH, Remington SJ. 2002. Green fluorescent protein variants as ratiometric dual emission pH sensors, 1: structural characterization and preliminary application. Biochemistry 41:15477–15488.

    Article  CAS  Google Scholar 

  236. Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R. 2003. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal Chem 75:3784–3791.

    Article  CAS  Google Scholar 

  237. Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA. 2001. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal Chem 73:2221–2228.

    Article  CAS  Google Scholar 

  238. Clark HA, Hoyer M, Philbert MA, Kopelman R. 1999. Optical nanosensors for chemical analysis inside single living cells, 1: fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836.

    Article  CAS  Google Scholar 

  239. Clark HA, Kopelman R, Tjalkens R, Philbert MA. 1999. Optical nanosensors for chemical analysis inside single living cells, 2: sensors for pH and calcium and the intracellular application of PEBBLE sensors. Anal Chem 71:4837–4843.

    Article  CAS  Google Scholar 

  240. Tsagkatakis I, Peper S, Retter R, Bell M, Bakker E. 2001. Monodisperse plasticized poly(vinyl chloride) fluorescent micros-pheres for selective ionophore-based sensing and extraction. Anal Chem 73:6083–6087.

    Article  CAS  Google Scholar 

  241. Ji J, Rosenzweig N, Jones I, Rosenzweig Z. 2001. Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages. Anal Chem 73:3521–3527.

    Article  CAS  Google Scholar 

  242. Ma A, Rosenzweig Z. 2004. Submicrometric lipobead-based fluorescence sensors for chloride ion measurements in aqueous solution. Anal Chem 76:569–575.

    Article  CAS  Google Scholar 

  243. Tsagkatakis I, Peper S, Bakker E. 2001. Spatial and spectral imaging of single micrometer-sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles. Anal Chem 73:315–320.

    Article  CAS  Google Scholar 

  244. McNamara KP, Nguyen T, Dumitrascu G, Ji J, Rosenzweig N, Rosenzweig Z. 2001. Synthesis, characterization, and application of fluorescence sensing lipobeads for intracellular pH measurements. Anal Chem 73:3240–3246.

    Article  CAS  Google Scholar 

  245. Ji J, Rosenzweig N, Griffin C, Rosenzweig Z. 2000. Synthesis and application of submicrometer fluorescence sensing particles for lyso-somal pH measurements in murine macrophages. Anal Chem 72:3497–3503.

    Article  CAS  Google Scholar 

  246. Chance B, Leigh JS, Miyake H, Smith DS, Nioka S, Greenfeld R, Finander M, Kaufmann K, Levy W, Young M, Cohen P, Yoshioka H, Boretsky R. 1988. Comparison of time-resolved and –unresolved measurements of deoxyhemoglobin in brain. Proc Natl Acad Sci USA 85:4971–4975.

    Article  CAS  Google Scholar 

  247. Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, Mantulin WW, Seeber M, Schlag PM, Kaschke M. 1997. Frequency-domain techniques enhance optical mammography: initial clinical results. Proc Natl Acad Sci USA 94:6468–6473.

    Article  CAS  Google Scholar 

  248. Wu J, Perelman L, Dasari RR, Feld MS. 1997. Fluorescence tomo-graphic imaging in turbid media using early-arriving photons and Laplace transforms. Proc Natl Acad Sci USA 94:8783–8788.

    Article  CAS  Google Scholar 

  249. Weissleder R, Ntziachristos V. 2003. Shedding light onto live molecular targets. Nature Med 9(1):123–128.

    Article  CAS  Google Scholar 

  250. Godavarty A, Thompson AB, Roy R, Gurfinkel M, Eppstein MJ, Zhang C, Sevick-Muraca EM. 2004. Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies. J Biomed Opt 9(3):488–496.

    Article  CAS  Google Scholar 

  251. Kuwana E, Sevick-Muraca E. 2002. Fluorescence lifetime spec-troscopy in multiply scattering media with dyes exhibiting multiex-ponential decay kinetics. Biophys J 83:1165–1176.

    Article  CAS  Google Scholar 

  252. Mahmood U, Tung CH, Bogdanov A, Weissleder R. 1999. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213:866–870.

    CAS  Google Scholar 

  253. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, Wiedenmann B, Grotzinger C. 2001. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnol 19:327–331.

    Article  CAS  Google Scholar 

  254. Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A, Josephson L, Weissleder R. 2004. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci USA 101(33):12294–12299.

    Article  CAS  Google Scholar 

  255. Bremer C, Tung CH, Weissleder R. 2001. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med 7(6):743–748.

    Article  CAS  Google Scholar 

  256. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, Huang PL, Weissleder R. 2002. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105:2766–2771.

    Article  Google Scholar 

  257. Graves EE, Ripoll J, Weissleder R, Ntziachristos V. 2003. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys 30(5):901–911.

    Article  CAS  Google Scholar 

  258. Ntziachristos V, Tung C-T, Bremer C, Weissleder R. 2002. Fluorescence molecular tomography resolves protease activity in vivo. Nature Med 8(7):757–760.

    Article  CAS  Google Scholar 

  259. Tung C-H, Bredow S, Mahmood U, Weissleder R. 1999. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chem 10:892–896.

    Article  CAS  Google Scholar 

  260. Tung C-H, Gerszten RE, Jaffer FA, Weissleder R. 2002. A novel near-infrared fluorescence sensor for detection of thrombin activation in blood. Chem Biochem 3:207–211.

    CAS  Google Scholar 

  261. Weissleder R, Tung C-H, Mahmood U, Bogdanov A. 1999. In vivo imaging of tumors with proteas-activated near-infrared fluorescent probes. Nature Biotechnol 17:375–378.

    Article  CAS  Google Scholar 

  262. Hou W-S, Li Z, Gordon RE, Chan K, Klein MJ, Levy R, Keysser M, Keyszer G, Bromme D. 2001. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am J Pathol 159(6):2167–2177.

    CAS  Google Scholar 

  263. Suzumori N, Ozaki Y, Ogasawara M, Suzumori K. 2001. Increased concentrations of cathepsin D in peritoneal fluid from women with endometriosis. Mol Human Reprod 7(5):459–462.

    Article  CAS  Google Scholar 

  264. Oksjoki S, Soderstrom M, Vuorio E, Anttila L. 2001. Differential expression patterns of cathepsins B, H, K, L, and S in the mouse ovary. Mol Human Reprod 7(1):27–34.

    Article  CAS  Google Scholar 

  265. Hemmila IA. 1992. Applications of fluorescence in immunoassays. John Wiley & Sons, New York.

    Google Scholar 

  266. Van Dyke K, Van Dyke R., eds. 1990. Luminescence immunoassay and molecular applications. CRC Press, Boca Raton, FL.

    Google Scholar 

  267. Ozinskas AJ. 1994. Principles of fluorescence immunoassay. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 449–496. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  268. Gosling JP. 1990. A decade of development in immunoassay methodology. Clin Chem 36(8):1408–1427.

    CAS  Google Scholar 

  269. Davidson RS, Hilchenbach MM. 1990. The use of fluorescent probes in immunochemistry. Photochem Photobiol 52(2):431–438.

    Article  CAS  Google Scholar 

  270. Vo-Dinh T, Sepaniak MJ, Griffin GD, Alarie JP. 1993. Immunosensors: principles and applications. Immunomethods 3:85– 92.

    Article  CAS  Google Scholar 

  271. Berson S, Yalow R. 1959. Quantitative aspects of the reaction between insulin and insulin-binding antibody. J Clin Invest 38:1996–2016.

    Article  CAS  Google Scholar 

  272. Lovgren T, Hemmila I, Pettersson K, Halonen P. 1985. Time-resolved fluorometry in immunoassay. In Alternative immunoassays, pp. 203–217. Ed WP Collins. John Wiley & Sons, New York.

    Google Scholar 

  273. Diamandis EP, 1988. Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21:139– 150.

    CAS  Google Scholar 

  274. Lövgren T, Pettersson K. 1990. Time-resolved fluoroimmunoassay, advantages and limitations. In Luminescence immunoassay and molecular applications, pp. 234–250. Ed K Van Dyke, R Van Dyke. CRC Press, Boca Raton, FL.

    Google Scholar 

  275. Khosravi M, Diamandis EP. 1987. Immunofluorometry of choriogo-nadotropin by time-resolved fluorescence spectroscopy, a new europium chelate as label. Clin Chem 33(11):1994–1999.

    CAS  Google Scholar 

  276. Soini E. 1984. Pulsed light, time-resolved fluorometric immunoas-say. In Monoclonal antibodies and new trends in immunoassays, pp. 197–208. Ed ChA Bizollon. Elsevier Science Publishers, New York.

    Google Scholar 

  277. Fiet J, Giton F, Auzerie J, Galons H. 2002. Development of a new sensitive and specific time-resolved fluoroimmunoassay (TR-FIA) of chlormadinone acetate in the serum of treated menopausal women. Steroids 67:1045–1055.

    Article  CAS  Google Scholar 

  278. Wu F-B, He Y-F, Han S-Q. 2001. Matrix interference in serum total thyroxin (T4) time-resolved fluorescence immunoassay (TRFIA) and its elimination with the use of streptavidin–biotin separation technique. Clin Chim Acta 308:117–126.

    Article  CAS  Google Scholar 

  279. Ohmura N, Tsukidate Y, Shinozaki H, Lackie SJ, Saiki H. 2003. Combinational use of antibody affinities in an immunoassay for extension of dynamic range and detection of multiple analytes. Anal Chem 75:104–110.

    Article  CAS  Google Scholar 

  280. Korpimaki T, Hagren V, Brockmann E-C, Tuomola M. 2004. Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody. Anal Chem 76:3091– 3098.

    Article  CAS  Google Scholar 

  281. Korpimaki T, Brockmann E-C, Kuronen O, Saraste M, Lamminmaki U, Tuomola M. 2004. Engineering of a broad specificity antibody for simultaneous detection of 13 sulfonamides at the maximum residue level. J Agric Food Chem 52:40–47.

    Article  CAS  Google Scholar 

  282. Ullman EF, Schwarzberg M, Rubenstein KE. 1976. Fluorescent excitation transfer immunoassay: A general method for determination of antigens. J Biol Chem 251(14):4172–4178.

    CAS  Google Scholar 

  283. Schobel U, Coille I, Brecht A, Steinwand M, Gauglitz G. 2001. Miniaturization of a homogeneous fluorescence immunoassay based on energy transfer using nanotiter plates as high-density sample carriers. Anal Chem 73:5172–5179.

    Article  CAS  Google Scholar 

  284. Schobel U, Egelhaaf H-J, Brecht A, Oelkrug D, Gauglitz G. 1999. New donor–acceptor pair for fluorescent immunoassays by energy transfer. Bioconjugate Chem 10:1107–1114.

    Article  CAS  Google Scholar 

  285. Qin Q-P, Peltola O, Pettersson K. 2003. Time-resolved fluorescence resonance energy transfer assay for point-of-care testing of urinary albumin. Clin Chem 49(7):1105–1113.

    Article  CAS  Google Scholar 

  286. Ohiro Y, Arai R, Ueda H, Nagamune T. 2002. A homogeneous and noncompetitive immunoassay based on the enhanced fluorescence resonance energy transfer by leucine zipper interaction. Anal Chem 74:5786–5792.

    Article  CAS  Google Scholar 

  287. Lee M, Walt DR, Nugent P. 1999. Fluorescent excitation transfer immunoassay for the determination of spinosyn A in water. J Agric Food Chem 47:2766–2770.

    Article  CAS  Google Scholar 

  288. Oswald B, Lehmann F, Simon L, Terpetschnig E, Wolfbeis OS. 2000. Red laser-induced fluorescence energy transfer in an immunosystem. Anal Biochem 280:272–277.

    Article  CAS  Google Scholar 

  289. Blomberg K, Hurskainen P, Hemmila I. 1999. Terbium and rho-damine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the $ subunit of human chorionic gonadotropin in serum. Clin Chem 45(6):855–861.

    CAS  Google Scholar 

  290. Dandliker WB, de Saussure VA. 1970. Fluorescence polarization in immunochemistry. Immunochemistry 7:799–828.

    Article  CAS  Google Scholar 

  291. Spencer RD, Toledo FB, Williams BT, Yoss NL. 1973. Design, construction, and two applications for an automated flow-cell polarization fluorometer with digital read out: enzyme-inhibitor (antitrypsin) assay and antigen–antibody (insulin–insulin antiserum) assay. Clin Chem 19(8):838–844.

    CAS  Google Scholar 

  292. Kobayashi Y, Amitani K, Watanabe F, Miyai K. 1979. Fluorescence polarization immunoassay for cortisol. Clin Chim Acta 92:241–247.

    Article  CAS  Google Scholar 

  293. Cox H, Whitby M, Nimmo G, Williams G. 1993. Evaluation of a novel fluorescence polarization immunoassay for teicoplanin. Antimicrob Agents Chemother 37:1924–1926.

    CAS  Google Scholar 

  294. Mastin SH, Buck RL, Mueggler PA. 1993. Performance of a fluorescence polarization immunoassay for teicoplanin in serum. Diagn Microbiol Infect Dis 16:17–24.

    Article  CAS  Google Scholar 

  295. Ripple MG, Goldberger BA, Caplan YH, Blitzer MG, Schwartz S. 1992. Detection of cocaine and its metabolites in human amniotic fluid. J Anal Toxicol 16:328–331.

    CAS  Google Scholar 

  296. de Kanel J, Dunlap L, Hall TD. 1989. Extending the detection limit of the TDx fluorescence polarization immunoassay for benzoylecgo-nine in urine. Clin Chem 35(10):2110–2112.

    Google Scholar 

  297. Uber-Bucek E, Hamon M, Huy CP, Dadoun H. 1992. Determination of thevetin B in serum by fluorescence polarization immunoassay. J Pharm Biomed Anal 10(6):413–419.

    Article  CAS  Google Scholar 

  298. Klein C, Batz H-G, Draeger B, Guder H-J, Herrmann R. Josel H-P, Nagele U, Schenk R, Bogt B. 1993. Fluorescence polarization im-munoassay. In Fluorescence spectroscopy: new methods and applications, pp. 245–258. Ed OS Wolfbeis. Springer-Verlag, Berlin.

    Google Scholar 

  299. Wang PP, Simpson E, Meucci V, Morrison M, Lunetta S, Zajac M, Boeckx R. 1991. Cyclosporine monitoring by fluorescence polarization immunoassay. Clin Biochem 24:55–58.

    Article  Google Scholar 

  300. Winkler M, Schumann G, Petersen D, Oellerich M, Wonigeit K. 1992. Monoclonal fluorescence polarization immunoassay evaluated for monitoring cyclosporine in whole blood after kidney, heart, and liver transplantation. Clin Chem 38(1):123–126.

    CAS  Google Scholar 

  301. Turek TC, Small EC, Bryant RW, Hill WAG. 2001. Development and validation of a competitive AKT serine/threonine kinase fluorescence polarization assay using a product-specific anti-phospho-ser-ine antibody. Anal Biochem 299:45–53.

    Article  CAS  Google Scholar 

  302. Martin K, Steinberg TH, Cooley LA, Gee KR, Beechem JM, Patton WF. 2003. Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3:1244–1255.

    Article  CAS  Google Scholar 

  303. Gaudet EA, Huang K-S, Zhang Y, Huang W, Mark D, Sportsman JR. 2003. A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinase. J Biomol Screening 8(2):164–175.

    Article  CAS  Google Scholar 

  304. Fiore M, Mitchell J, Doan T, Nelson R, Winter G, Grandone C, Zeng K, Haraden R, Smith J, Harris K, Leszczynski J, Berry D, Safford S, Barnes G, Scholnick A, Ludington K. 1988. The Abbott IMxTM automated benchtop immunochemistry analyzer system. Clin Chem 34:1726–1732.

    CAS  Google Scholar 

  305. Lang H, Wurzburg U. 1982. Creatine kinase, an enzyme of many forms. Clin Chem 28:1439–1447.

    CAS  Google Scholar 

  306. Brayne CEG, Calloway SP, Dow L. 1982. Blood creatine kinase isoenzymes BB in boxers. Lancet ii:1308–1309.

    Article  Google Scholar 

  307. Grossman SH. 1984. Fluorescence polarization immunoassay applied to macromolecules: creatine kinase-BB. J Clin Immunol 7:96–100.

    CAS  Google Scholar 

  308. Charlesworth JM. 1994. Optical sensing of oxygen by fluorescence quenching. Sens Actuators B 22:1–5.

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Fluorescence Sensing. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_19

Download citation

Publish with us

Policies and ethics