Skip to main content

Heat Shock Proteins and the Regulation of Apoptosis

  • Chapter
Heat Shock Proteins in Neural Cells

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

Since the elucidation of their functions in protein folding and translocation, heat shock protein chaperones have been a target of research in all spheres of biomedicine. Within the last five years, research efforts have intensified, following the discovery of raised levels of heat shock protein (Hsp) expression in the brains of patients suffering from many neurodegenerative disorders, including Alzheimer’s, Parkinson’s and Huntington’s diseases and cerebral ischaemia. Expression of Hsps in the brains of patients is thought to form part of a general protective stress response. The stress in question, however, varies, depending on the particular disease. For example, accumulation of α-synuclein aggregates in Parkinson’s Disease causes stress to the protein folding machinery of the cells, with consequent up-regulation of stress proteins including Hsps. When markers indicative of the occurrence of apoptosis were also found in degenerating brain tissue, the question of how heat shock proteins might impact on apoptotic neural cells was raised. However, their particular function under diseased conditions remains unclear. This chapter highlights the involvement of Hsps in the regulation of neural apoptosis, from the original reports of Hsp expression during neurological disorders, to evidence of their neuroprotective properties and their potential as therapeutic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407:770–776.

    CAS  PubMed  Google Scholar 

  2. Samali A, Cai J, Zhivotovsky B et al. Presence of a preapoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 1999; 18:2040–2048.

    CAS  PubMed  Google Scholar 

  3. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004; 384:201–232.

    CAS  PubMed  Google Scholar 

  4. Philchenkov A. Caspases: Potential targets for regulating cell death. J Cell Mol Med 2004; 8:432–444.

    CAS  PubMed  Google Scholar 

  5. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5:897–907.

    CAS  PubMed  Google Scholar 

  6. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: A comprehensive update of caspase substrates. Cell Death Differ 2003; 10:76–100.

    CAS  PubMed  Google Scholar 

  7. Samali A, Gorman AM, Cotter TG. Apoptosis-The story so far. Experientia 1996; 52:933–941.

    CAS  PubMed  Google Scholar 

  8. Thorburn A. Death receptor-induced cell killing. Cell Signal 2004; 16:139–144.

    CAS  PubMed  Google Scholar 

  9. Wang S, El-Deiry WS. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 2003; 22:8628–8633.

    CAS  PubMed  Google Scholar 

  10. Curtin JF, Cotter TG. Live and let die: Regulatory mechanisms in Fas-mediated apoptosis. Cell Signal 2003; 15:983–992.

    CAS  PubMed  Google Scholar 

  11. Chang HY, Nishitoh H, Yang X et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 1998; 281:1860–1863.

    CAS  PubMed  Google Scholar 

  12. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281:1309–1312.

    CAS  PubMed  Google Scholar 

  13. Mishra NC, Kumar S. Apoptosis: A mitochondrial perspective on cell death. Indian J Exp Biol 2005; 43:25–34.

    CAS  PubMed  Google Scholar 

  14. Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 2004; 90:1281–1289.

    CAS  PubMed  Google Scholar 

  15. Zhou P, Chou J, Olea RS et al. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptor/caspase interaction. Proc Natl Acad Sci USA 1999; 96:11265–11270.

    CAS  PubMed  Google Scholar 

  16. Hill MM, Adrain C, Martin SJ. Portrait of a killer: The mitochondrial apoptosome emerges from the shadows. Mol Interv 2003; 3:19–26.

    CAS  PubMed  Google Scholar 

  17. Nakagawa T, Zhu H, Morishima N et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403:98–103.

    CAS  PubMed  Google Scholar 

  18. Yoneda T, Imaizumi K, Oono K et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 2001; 276:13935–13940.

    CAS  PubMed  Google Scholar 

  19. Rao RV, Hermel E, Castro-Obregon S et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276:33869–33874.

    CAS  PubMed  Google Scholar 

  20. Morishima N, Nakanishi K, Takenouchi H et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 2002; 277:34287–34294.

    CAS  PubMed  Google Scholar 

  21. Rutkowski DT, Kaufman RJ. A trip to the ER Coping with stress. Trends Cell Biol 2004; 14:20–28.

    CAS  PubMed  Google Scholar 

  22. Ma Y, Hendershot LM. The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones 2002; 7:222–229.

    CAS  PubMed  Google Scholar 

  23. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23:7448–7459.

    CAS  PubMed  Google Scholar 

  24. Fischer H, Koenig U, Eckhart L et al. Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 2002; 293:722–726.

    CAS  PubMed  Google Scholar 

  25. Saleh M, Vaillancourt JP, Graham RK et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 2004; 429:75–79.

    CAS  PubMed  Google Scholar 

  26. Hitomi J, Katayama T, Eguchi Y et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004; 165:347–356.

    CAS  PubMed  Google Scholar 

  27. Liu X, Kim CN, Yang J et al. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996; 86:147–157.

    CAS  PubMed  Google Scholar 

  28. Lorenzo HK, Susin SA, Penninger J et al. Apoptosis inducing factor (AIF): A phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999; 6:516–524.

    CAS  PubMed  Google Scholar 

  29. Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing LAP proteins. Cell 2000; 102:43–53.

    CAS  PubMed  Google Scholar 

  30. Schafer P, Scholz SR, Gimadutdinow O et al. Structural and functional characterization of mitochondrial EndoG, a sugar nonspecific nuclease which plays an important role during apoptosis. J Mol Biol 2004; 338:217–228.

    CAS  PubMed  Google Scholar 

  31. Melino G, Bernassola F, Ranalli M et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 2004; 279:8076–8083.

    CAS  PubMed  Google Scholar 

  32. Xanthoudakis S, Roy S, Rasper D et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 1999; 18:2049–2056.

    CAS  PubMed  Google Scholar 

  33. Li H, Zhu H, Xu CJ et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94:491–501.

    CAS  PubMed  Google Scholar 

  34. Luo X, Budihardjo I, Zou H et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94:481–490.

    CAS  PubMed  Google Scholar 

  35. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17:1675–1687.

    CAS  PubMed  Google Scholar 

  36. Robertson JD, Gogvadze V, Zhivotovsky B et al. Distinct pathways for stimulation of cytochrome c release by etoposide. J Biol Chem 2000; 275:32438–32443.

    CAS  PubMed  Google Scholar 

  37. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000; 407:777–783.

    CAS  PubMed  Google Scholar 

  38. Willis S, Day CL, Hinds MG et al. The Bcl-2-regulated apoptotic pathway. J Cell Sci 2003; 116:4053–4056.

    CAS  PubMed  Google Scholar 

  39. Saleh A, Srinivasula SM, Balkir L et al. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000; 2:476–483.

    CAS  PubMed  Google Scholar 

  40. Beere HM, Wolf BB, Cain K et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000; 2:469–475.

    CAS  PubMed  Google Scholar 

  41. Steel R, Doherty JP, Buzzard K et al. Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 2004; 279:51490–51499.

    CAS  PubMed  Google Scholar 

  42. Creagh EM, Carmody RJ, Cotter TG. Heat shock protein 70 inhibits caspase-dependent and-independent apoptosis in Jurkat T cells. Exp Cell Res 2000; 257:58–66.

    CAS  PubMed  Google Scholar 

  43. Ravagnan L, Gurbuxani S, Susin SA et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001; 3:839–843.

    CAS  PubMed  Google Scholar 

  44. Clemens MJ. Translational control in virus-infected cells: Models for cellular stress responses. Semin Cell Dev Biol 2005; 16:13–20.

    CAS  PubMed  Google Scholar 

  45. Gabai VL, Yaglom JA, Volloch V et al. Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 2000; 20:6826–6836.

    CAS  PubMed  Google Scholar 

  46. Mosser DD, Caron AW, Bourget L et al. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997; 17:5317–5327.

    CAS  PubMed  Google Scholar 

  47. Park J, Liu AY. JNK phosphorylates the HSF1 transcriptional activation domain: Role of JNK in the regulation of the heat shock response. J Cell Biochem 2001; 82:326–338.

    CAS  PubMed  Google Scholar 

  48. Beere HM. “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117:2641–2651.

    CAS  PubMed  Google Scholar 

  49. Jaattela M, Wissing D, Kokholm K et al. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17:6124–6134.

    CAS  PubMed  Google Scholar 

  50. Komarova EY, Afanasyeva EA, Bulatova MM et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaperones 2004; 9:265–275.

    CAS  PubMed  Google Scholar 

  51. Park HS, Cho SG, Kim CK et al. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 2002; 22:7721–7730.

    CAS  PubMed  Google Scholar 

  52. Michels AA, Kanon B, Konings AW et al. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem 1997; 272:33283–33289.

    CAS  PubMed  Google Scholar 

  53. Lu Z, Cyr DM. Protein folding activity of Hsp70 is modified differentially by the hsp40 cochaperones Sis1 and Ydj1. J Biol Chem 1998; 273:27824–27830.

    CAS  PubMed  Google Scholar 

  54. Liu QL, Kishi H, Ohtsuka K et al. Heat shock protein 70 binds caspase-activated DNase and enhances its activity in TCR-stimulated T cells. Blood 2003; 102:1788–1796.

    CAS  PubMed  Google Scholar 

  55. Gotoh T, Terada K, Oyadomari S et al. hsp70-DnaJ chaperone pair prevents nitric oxide-and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 2004; 11:390–402.

    CAS  PubMed  Google Scholar 

  56. Bruey JM, Ducasse C, Bonniaud P et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2:645–652.

    CAS  PubMed  Google Scholar 

  57. Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 2001; 9:195–201.

    CAS  PubMed  Google Scholar 

  58. Garrido C, Bruey JM, Fromentin A et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999; 13:2061–2070.

    CAS  PubMed  Google Scholar 

  59. Paul C, Manero F, Gonin S et al. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002; 22:816–834.

    CAS  PubMed  Google Scholar 

  60. Pandey P, Farber R, Nakazawa A et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000; 19:1975–1981.

    CAS  PubMed  Google Scholar 

  61. Chauhan D, Li G, Hideshima T et al. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 2003; 102:3379–3386.

    CAS  PubMed  Google Scholar 

  62. Charette SJ, Landry J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fas-induced apoptosis. Ann NY Acad Sci 2000; 926:126–131.

    CAS  PubMed  Google Scholar 

  63. Thompson JE, Thompson CB. Putting the rap on Akt. J Clin Oncol 2004; 22:4217–4226.

    CAS  PubMed  Google Scholar 

  64. Mearow KM, Dodge ME, Rahimtula M et al. Stress-mediated signaling in PC12 cells-The role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 2002; 83:452–462.

    CAS  PubMed  Google Scholar 

  65. Rane MJ, Pan Y, Singh S et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 2003; 278:27828–27835.

    CAS  PubMed  Google Scholar 

  66. Parcellier A, Schmitt E, Gurbuxani S et al. HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 2003; 23:5790–5802.

    CAS  PubMed  Google Scholar 

  67. Mehlen P, Schulze-Osthoff K, Arrigo AP. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1-and staurosporine-induced cell death. J Biol Chem 1996; 271:16510–16514.

    CAS  PubMed  Google Scholar 

  68. Mehlen P, Coronas V, Ljubic-Thibal V et al. Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Differ 1999; 6:227–233.

    CAS  PubMed  Google Scholar 

  69. Arrigo AP, Virot S, Chaufour S et al. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 2005; 7:414–422.

    CAS  PubMed  Google Scholar 

  70. Wyttenbach A, Sauvageot O, Carmichael J et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002; 11:1137–1151.

    CAS  PubMed  Google Scholar 

  71. Preville X, Salvemini F, Giraud S et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp Cell Res 1999; 247:61–78.

    CAS  PubMed  Google Scholar 

  72. Lavoie JN, Lambert H, Hickey E et al. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 1995; 15:505–516.

    CAS  PubMed  Google Scholar 

  73. Geum D, Son GH, Kim K. Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in hippocampal progenitor cells. J Biol Chem 2002; 277:19913–19921.

    CAS  PubMed  Google Scholar 

  74. Van Why SK, Mann AS, Ardito T et al. Hsp27 associates with actin and limits injury in energy depleted renal epithelia. J Am Soc Nephrol 2003; 14:98–106.

    PubMed  Google Scholar 

  75. Guay J, Lambert H, Gingras-Breton G et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110 (Pt 3):357–368.

    CAS  PubMed  Google Scholar 

  76. Huot J, Houle F, Rousseau S et al. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 1998; 143:1361–1373.

    CAS  PubMed  Google Scholar 

  77. Shimura H, Miura-Shimura Y, Kosik KS. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 2004; 279:17957–17962.

    CAS  PubMed  Google Scholar 

  78. Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 2005; 1739:298–310.

    CAS  PubMed  Google Scholar 

  79. Lassmann H, Bancher C, Breitschopf H et al. Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol (Berl) 1995; 89:35–41.

    CAS  PubMed  Google Scholar 

  80. Smale G, Nichols NR, Brady DR et al. Evidence for apoptotic cell death in Alzheimer’s disease. Exp Neurol 1995; 133:225–230.

    CAS  PubMed  Google Scholar 

  81. Dragunow M, Preston K, Dodd J et al. Clusterin accumulates in dying neurons following status epilepticus. Brain Res Mol Brain Res 1995; 32:279–290.

    CAS  PubMed  Google Scholar 

  82. Sugaya K, Reeves M, McKinney M. Topographic associations between DNA fragmentation and Alzheimer’s disease neuropathology in the hippocampus. Neurochem Int 1997; 31:275–281.

    CAS  PubMed  Google Scholar 

  83. Thomas LB, Gates DJ, Richfield EK et al. DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp Neurol 1995; 133:265–272.

    CAS  PubMed  Google Scholar 

  84. Vis JC, Schipper E, de Boer-van Huizen RT et al. Expression pattern of apoptosis-related markers in Huntington’s disease. Acta Neuropathol (Berl) 2005.

    Google Scholar 

  85. Tatton WG, Chalmers-Redman R, Brown D et al. Apoptosis in Parkinson’s disease: Signals for neuronal degradation. Ann Neurol 2003; 53(Suppl 3):S61–70, (discussion S70–62).

    CAS  PubMed  Google Scholar 

  86. Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 2000; 166:29–43.

    CAS  PubMed  Google Scholar 

  87. de la Monte SM, Sohn YK, Ganju N et al. P53-and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 1998; 78:401–411.

    PubMed  Google Scholar 

  88. Hartmann A, Hunot S, Michel PP et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97:2875–2880.

    CAS  PubMed  Google Scholar 

  89. Hartmann A, Troadec JD, Hunot S et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21:2247–2255.

    CAS  PubMed  Google Scholar 

  90. Giffard RG, Yenari MA. Many mechanisms for hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 2004; 16:53–61.

    PubMed  Google Scholar 

  91. Matsumori Y, Hong SM, Aoyama K et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005.

    Google Scholar 

  92. Kelly S, Yenari MA. Neuroprotection: Heat shock proteins. Curr Med Res Opin 2002; 18(Suppl 2):s55–60.

    PubMed  Google Scholar 

  93. Amin V, Cumming DV, Latchman DS. Over-expression of heat shock protein 70 protects neuronal cells against both thermal and ischaemic stress but with different efficiencies. Neurosci Lett 1996; 206:45–48.

    CAS  PubMed  Google Scholar 

  94. Kwong JM, Lam TT, Caprioli J. Hyperthermic preconditioning protects retinal neurons from N-methyl-D-aspartate (NMDA)-induced apoptosis in rat. Brain Res 2003; 970:119–130.

    CAS  PubMed  Google Scholar 

  95. Xu L, Lee JE, Giffard RG. Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of cocultured neurons. Neurosci Lett 1999; 277:193–197.

    CAS  PubMed  Google Scholar 

  96. Whidock NA, Lindsey K, Agarwal N et al. Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and-independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 2005; 46:1085–1091.

    Google Scholar 

  97. Dong Z, Wolfer DP, Lipp HP et al. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 2005; 11:80–88.

    CAS  PubMed  Google Scholar 

  98. Zhou Y, Gu G, Goodlett DR et al. Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 2004; 279:39155–39164.

    CAS  PubMed  Google Scholar 

  99. Quigney DJ, Gorman AM, Samali A. Heat shock protects PC12 cells against MPP+ toxicity. Brain Res 2003; 993:133–139.

    CAS  PubMed  Google Scholar 

  100. Gorman AM, Szegezdi E, Quigney DJ et al. Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 2005; 327:801–810.

    CAS  PubMed  Google Scholar 

  101. Dedmon MM, Christodoulou J, Wilson MR et al. Heat shock protein 70 inhibits {alpha}-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 2005; 280:14733–14740.

    CAS  PubMed  Google Scholar 

  102. Klucken J, Shin Y, Masliah E et al. Hsp70 Reduces alpha-synuclein aggregation and toxicity. J Biol Chem 2004; 279:25497–25502.

    CAS  PubMed  Google Scholar 

  103. Zourlidou A, Payne Smith MD, Latchman DS. HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 2004; 88:1439–1448.

    CAS  PubMed  Google Scholar 

  104. Magrane J, Smith RC, Walsh K et al. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 2004; 24:1700–1706.

    CAS  PubMed  Google Scholar 

  105. Zhang Y, Champagne N, Beitel LK et al. Estrogen and androgen protection of human neurons against intracellular amyloid beta1-42 toxicity through heat shock protein 70. J Neurosci 2004; 24:5315–5321.

    CAS  PubMed  Google Scholar 

  106. Rossler OG, Bauer I, Chung HY et al. Glutamate-induced cell death of immortalized murine hippocampal neurons: Neuroprotective activity of heme oxygenase-1, heat shock protein 70, and sodium selenite. Neurosci Lett 2004; 362:253–257.

    CAS  PubMed  Google Scholar 

  107. Lee JE, Yenari MA, Sun GH et al. Differential neuroprotection from human heat shock protein 70 overexpression in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 2001; 170:129–139.

    CAS  PubMed  Google Scholar 

  108. Rajdev S, Hara K, Kokubo Y et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 2000; 47:782–791.

    CAS  PubMed  Google Scholar 

  109. Plumier JC, Krueger AM, Currie RW et al. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 1997; 2:162–167.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Samali .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media.

About this chapter

Cite this chapter

FitzGerald, U., Gorman, A.M., Samali, A. (2009). Heat Shock Proteins and the Regulation of Apoptosis. In: Heat Shock Proteins in Neural Cells. Neuroscience Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39954-6_5

Download citation

Publish with us

Policies and ethics