Skip to main content

Determinants of Protein Folding and Aggregation in P22 Tailspike Protein

  • Chapter
  • 959 Accesses

Abstract

The P22 tailspike protein is a well-studied model system for understanding multimeric protein folding and aggregation. It is one of the few systems for which both in vivo and in vitro folding pathways have been well characterized. Aggregation of the P22 tailspike occurs through a multimeric addition pathway in which both monomeric and multimeric protein can associate with existing aggregates promoting aggregate growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Matagne and C. M. Dobson, The folding process of hen lysozyme: a perspective from the “new view,” Cell Mol. Life Sci. 54, 363–371 (1998).

    Article  PubMed  CAS  Google Scholar 

  • V. Daggett and A. Fersht, The present view of the mechanism of protein folding, Nat. Rev. Mol. Cell Biol. 4, 497–502 (2003).

    Article  PubMed  CAS  Google Scholar 

  • F. Chiti, E. De Lorenzi, S. Grossi, P. Mangione, S. Giorgetti, G. Caccialanza, C. M. Dobson, G. Merlini, G. Ramponi, and V. Bellotti, A partially structured species of beta 2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis, J. Biol. Chem. 276, 46714–46721 (2001).

    Article  PubMed  CAS  Google Scholar 

  • D. P. Goldenberg and J. King, Temperature-sensitive mutants blocked in the folding or subunit of the bacteriophage P22 tail spike protein. II. Active mutant proteins matured at 30 degrees C, J. Mol. Biol. 145, 633–651 (1981).

    Article  PubMed  CAS  Google Scholar 

  • J. M. Sturtevant, M.-H. Yu, C. Haase-Pettingell, and J. King, Thermostability of temperature-sensitive folding mutants of the P22 tailspike protein. J. Biol. Chem. 264, 10693–10698 (1989).

    PubMed  CAS  Google Scholar 

  • S. Steinbacher, R. Seckler, S. Miller, B. Steipe, R. Huber, and P. Reinemer, Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer, Science 265, 383–385 (1994).

    Article  PubMed  CAS  Google Scholar 

  • S. Steinbacher, S. Miller, U. Baxa, N. Budisa, A. Weintraub, R. Seckler, and R. Huber, Phage P22 tailspike protein: crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage, J. Mol. Biol. 267, 865–880 (1997).

    Article  PubMed  CAS  Google Scholar 

  • B. L. Chen and J. King, J. Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase, Biochemistry 30, 6260–6269 (1991).

    Article  PubMed  CAS  Google Scholar 

  • M. Danner, A. Fuchs, S. Miller, and R. Seckler, Folding and assembly of phage P22 tailspike protein lacking N-terminal, head-binding domain, Eur. J. Biochem. 215, 653–661 (1993).

    Article  PubMed  CAS  Google Scholar 

  • D. Goldenberg and J. King, Trimeric intermediate in the in vivo folding and subunit assembly of the tailspike endorhamnosidase of bacteriophage P22, Proc. Natl. Acad. Sci. USA 79, 3403–3407 (1982).

    Article  PubMed  CAS  Google Scholar 

  • D. Goldenberg, D. H. Smith, and J. King, Genetic analysis of the folding pathway for the tailspike protein of phage P22, Proc. Natl. Acad. Sci. USA 80, 7060–7064 (1983).

    Article  PubMed  CAS  Google Scholar 

  • C. Haase-Pettingell and J. King, Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation a model for inclusion body formation, J. Biol. Chem. 263, 4977–4983 (1988).

    PubMed  CAS  Google Scholar 

  • J. King and M.-H. Yu, Mutational analysis of protein folding pathways: The P22 tailspike endorhamnosidase, Meth. Enzymol. 131, 250–266 (1986).

    Article  PubMed  CAS  Google Scholar 

  • M. Danner and R. Seckler, Mechanism of phage P22 tailspike folding mutations, Prot. Sci. 2, 1869–1881 (1993).

    CAS  Google Scholar 

  • M. Beibinger, S. C. Lee, S. Steinbacher, P. Reinemer, R. Huber, M.-H. Yu, and R. Seckler, Mutations that stabilize folding intermediates of phage P22 tailspike protein: Folding in vivo and in vitro, stability, and structural context, J. Mol. Biol. 249, 185–194 (1995).

    Article  Google Scholar 

  • R. Seckler, A. Fuchs, J. King, and R. Jaenicke, Reconstitution of the thermostable trimeric phage P22 tailspike from denatured chains in vitro, J. Biol. Chem. 264, 11750–11753 (1989).

    PubMed  CAS  Google Scholar 

  • M. Gage and A. S. Robinson, C-Terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer, Protein Sci. 12, 2732–2747 (2003).

    Article  PubMed  CAS  Google Scholar 

  • A. S. Robinson and J. King, Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein, Nature Struct. Biol. 4, 450–455 (1997).

    Article  PubMed  CAS  Google Scholar 

  • C. Haase-Pettingell, S. D. Betts, S. W. Raso, L. Stuart, A. Robinson, and J. King, Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike, Prot. Sci. 10, 397–410 (2000)

    Article  Google Scholar 

  • B. L. Danek and A. S. Robinson, Nonnative interactions between cysteines direct productive assembly of P22 tailspike protein, Biophys. J. 85, 3237–3247 (2003).

    PubMed  CAS  Google Scholar 

  • D. Sargent, J. M. Benevides, M.-H. Yu, J. King, and G. J. Thomas, Jr., Secondary structure and thermostability of the phage P22 tailspike. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant, J. Mol. Biol. 199, 491–502 (1988).

    Article  PubMed  CAS  Google Scholar 

  • M. A. Speed, T. Morshead, D. I. C. Wang, and J. King, Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies, Prot. Sci. 6, 99–108 (1997).

    CAS  Google Scholar 

  • S. D. Betts and J. King, Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation, Prot. Sci. 7, 1516–1523 (1998).

    CAS  Google Scholar 

  • B. G. Lefebvre and A. S. Robinson, Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates, Biotechnol. Bioeng. 82, 595–604 (2003).

    Article  PubMed  CAS  Google Scholar 

  • D. H. Smith and J. King, Temperature-sensitive mutants blocked in the folding or subunit assembly of the bacteriophage P22 tailspike protein. III. Intensive polypeptide chains synthesized at 39 degrees C, J. Mol. Biol. 145, 653–676 (1981).

    Article  PubMed  CAS  Google Scholar 

  • B. Fane and J. King, Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations, Genetics, 157–171 (1987).

    Google Scholar 

  • C. Haase-Pettingell and J. King, Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase, J. Mol. Biol. 267, 88–102 (1997).

    Article  PubMed  CAS  Google Scholar 

  • B. Schuler, F. Furst, F. Osterroth, S. Steinbacher, R. Huber, and R. Seckler, Plasticity and steric strain in a parallel β-helix: rational mutations in the P22 tailspike protein, Proteins: Struct, Funct, Genet. 39, 89–101 (2000).

    Article  CAS  Google Scholar 

  • R. Villafane, A. Fleming, and C. Haase-Pettingell, Isolation of suppressors of temperature-sensitive folding mutations, J. Bacteriol. 176, 137–142 (1994).

    PubMed  CAS  Google Scholar 

  • B. Fane and J. King, Intragenic suppressors of folding defects in the P22 tailspike protein, Genetics 127, 263–277 (1991).

    PubMed  CAS  Google Scholar 

  • B. Fane, R. Villafane, A. Mitraki, and J. King, Identification of global suppressors for temperature-sensitive folding mutations of the P22 tailspike protein, J. Biol. Chem. 266, 11640–11648 (1991).

    PubMed  CAS  Google Scholar 

  • B. Schuler and R. Seckler, P22 tailspike folding mutants revisited: effects on the thermodynamic stability of the isolated β-helix domain, J. Mol. Biol. 281, 227–234 (1998).

    Article  PubMed  CAS  Google Scholar 

  • J. F. Kreisberg, S. D. Betts, C. Haase-Pettingell, and J. King, The interdigitated β-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization, Prot. Sci. 11, 820–830 (2002).

    Article  CAS  Google Scholar 

  • K. Whitehead, The Effects of Chemical Additives on the in vitro Refolding of the P22 Tailspike Protein, Undergraduate Senior Thesis, University of Delaware (2002).

    Google Scholar 

  • M. Speed, D. I. C. Wang, and J. King, Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tail spike polypeptide chains, Prot. Sci. 4, 900–908 (1995).

    Article  CAS  Google Scholar 

  • B. Friguet, l. Djavadi-Ohaniance, C. Haase-Pettingell, J. King, and M. E. Goldberg, Properties of monoclonal antibodies selected for probing the conformation of wild type and mutant forms of the P22 tailspike endorhamnosidase, J. Biol. Chem. 265, 10347–10351 (1990).

    PubMed  CAS  Google Scholar 

  • M. Speed, Characterization of the Aggregation Pathway Competing with Productive Protein Folding. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1996).

    Google Scholar 

  • B. G. Lefebvre, M. J. Gage, and A. S. Robinson, Maximizing recovery of native protein from aggregates by optimizing pressure treatment, Biotechnol. Progr. 20, 623–629 (2004).

    Article  CAS  Google Scholar 

  • B. G. Lefebvre, N. K. Comolli, M. J. Gage, and A. S. Robinson, Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike, Prot. Sci. 13, 1538–15346 (2004).

    Article  CAS  Google Scholar 

  • J. D. Harper, S. S. Wong, C. Lieber, and P. T. Lansbury, Jr., Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease, Biochemistry 38, 8972–8980 (1999).

    Article  PubMed  CAS  Google Scholar 

  • K. A. Conway, J. D. Harper, and P. T. Lansbury, Jr., Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid, Biochemistry 39, 2552–2563 (2000).

    Article  PubMed  CAS  Google Scholar 

  • M. A. Speed, D. I. C. Wang, and J. King, Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition, Nature Biotech. 14, 1283–1287 (1996).

    Article  CAS  Google Scholar 

  • B. Schuler, R. Rachel, and R. Seckler, Formation of fibrous aggregates from a non-native intermediate: the isolated P22 tailspike β-helix domain, J. Biol. Chem. 274, 18589–18596 (1999).

    Article  PubMed  CAS  Google Scholar 

  • D. T. Downing and N. D. Lazo, Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical, Biochem. J. 343 Pt 2, 453–460 (1999).

    Article  PubMed  CAS  Google Scholar 

  • N. D. Lazo and D. T. Downing, Amyloid fibrils may be assembled from beta-helical protofibrils, Biochemistry 37, 1731–1735 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Gage, M.J., Lefebvre, B.G., Robinson, A.S. (2006). Determinants of Protein Folding and Aggregation in P22 Tailspike Protein. In: Misbehaving Proteins. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36063-8_11

Download citation

Publish with us

Policies and ethics