Skip to main content

Neurotrophins and Central Nervous System Development

  • Reference work entry
  • 665 Accesses

Abstract:

The formation of the vertebrate nervous system is characterized by widespread programed cell death, which determines cell number and appropriate target innervation during development. The neurotrophins, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and NT-4, represent an important family of trophic factors that are essential for survival of selective populations of neurons during different developmental periods. Neurotrophins exert their cellular effects through the actions of two different receptors, the tropomyosin-related kinase (Trk) receptor tyrosine kinase and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Much attention has been given to the consequences of neurotrophin action in the peripheral nervous system (PNS); however, neurotrophins are widely expressed in the brain and spinal cord. This chapter focuses on new views concerning effects of neurotrophins in central nervous system (CNS) development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

BDNF:

brain-derived neurotrophic factor

CA1:

cornu ammonis 1

CA3:

cornu ammonis 3

CNS:

central nervous system

CP:

cortical plate

EGL:

external germinal layer

ERK:

extracellular signal-regulated kinase

GEF:

guanine nucleotide-exchange factor

IgG:

immunoglobulin G

IGL:

internal germinal layer

MEK:

mitogen activated protein kinase/ERK kinase

MGE:

medial ganglionic eminence

ML:

molecular layer

MTN:

mesencephalic trigeminal nucleus

MZ:

marginal zone

NGF:

nerve growth factor

NMDA:

N-methyl-D-aspartate

NPY:

neuropeptide Y

NT-3:

neurotrophin-3

NT-4:

neurotrophin-4

PI3K:

phosphatidylinositol 3-kinase

PLCγ:

phospholipase Cγ

PNS:

peripheral nervous system

RGC:

retinal ganglion cell

SNP:

single nucleotide polymorphism

Tiam1:

T lymphoma invasion and metastasis

Trk:

tropomyosin-related kinase

VTA:

ventral tegmental area

References

  • Adcock KH, Metzger F, Kapfhammer JP. 2004. Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures. Neuroscience 127: 137–145.

    CAS  PubMed  Google Scholar 

  • Alcantara S, Frisen J, del Rio JA, Soriano E, Barbacid M, et al. 1997. TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J Neurosci 17: 3623–3633.

    CAS  PubMed  Google Scholar 

  • Alcantara S, Pozas E, Ibanez CF, Soriano E. 2006. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization. Cereb Cortex 16: 487–499.

    PubMed  Google Scholar 

  • Alder J, Cho NK, Hatten ME. 1996. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17: 389–399.

    CAS  PubMed  Google Scholar 

  • Alderson RF, Alterman AL, Barde YA, Lindsay RM. 1990. Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5: 297–306.

    CAS  PubMed  Google Scholar 

  • Alema S, Casalbore P, Agostini E, Tato F. 1985. Differentiation of PC12 phaeochromocytoma cells induced by v-src oncogene. Nature 316: 557–559.

    CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA. 1985. Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231: 42–65.

    CAS  PubMed  Google Scholar 

  • Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL. 2001. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128: 353–363.

    CAS  PubMed  Google Scholar 

  • Ang ES, Jr., Haydar TF, Gluncic V, Rakic P. 2003. Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23: 5805–5815.

    CAS  PubMed  Google Scholar 

  • Angevine JB, Sidman RL. 1961. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192: 766.

    PubMed  Google Scholar 

  • Baker RE, Dijkhuizen PA, Van Pelt J, Verhaagen J. 1998. Growth of pyramidal, but not non-pyramidal, dendrites in long-term organotypic explants of neonatal rat neocortex chronically exposed to neurotrophin-3. Eur J Neurosci 10: 1037–1044.

    CAS  PubMed  Google Scholar 

  • Bates B, Rios M, Trumpp A, Chen C, Fan G, et al. 1999. Neurotrophin-3 is required for proper cerebellar development. Nat Neurosci 2: 115–117.

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J, Russo RJ, Dai XF, Simmons JA. 1991. Cell migration in the rat embryonic neocortex. J Comp Neurol 307: 499–516.

    CAS  PubMed  Google Scholar 

  • Behar TN, Dugich-Djordjevic MM, Li YX, Ma W, Somogyi R, et al. 1997. Neurotrophins stimulate chemotaxis of embryonic cortical neurons. Eur J Neurosci 9: 2561–2570.

    CAS  PubMed  Google Scholar 

  • Berghuis P, Agerman K, Dobszay MB, Minichiello L, Harkany T, et al. 2006. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCgamma pathway. J Neurobiol 66: 1437–1451.

    CAS  PubMed  Google Scholar 

  • Berghuis P, Dobszay MB, Wang X, Spano S, Ledda F, et al. 2005. Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc Natl Acad Sci USA 102: 19115–19120.

    CAS  PubMed  Google Scholar 

  • Blochl A, Thoenen H. 1995. Characterization of nerve growth factor (NGF) release from hippocampal neurons: Evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur J Neurosci 7: 1220–1228.

    CAS  PubMed  Google Scholar 

  • Bonhoeffer T. 1996. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 6: 119–126.

    CAS  PubMed  Google Scholar 

  • Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, et al. 2002. BDNF stimulates migration of cerebellar granule cells. Development 129: 1435–1442.

    CAS  PubMed  Google Scholar 

  • Brunstrom JE, Gray-Swain MR, Osborne PA, Pearlman AL. 1997. Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18: 505–517.

    CAS  PubMed  Google Scholar 

  • Caviness VS, Jr. 1982. Neocortical histogenesis in normal and reeler mice: A developmental study based upon [3H]thymidine autoradiography. Brain Res 256: 293–302.

    PubMed  Google Scholar 

  • Chao MV, Bothwell M. 2002. Neurotrophins: To cleave or not to cleave. Neuron 33: 9–12.

    CAS  PubMed  Google Scholar 

  • Chen KS, Nishimura MC, Armanini MP, Crowley C, Spencer SD, et al. 1997. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J Neurosci 17: 7288–7296.

    CAS  PubMed  Google Scholar 

  • Chen Y, Wang PY, Ghosh A. 2005. Regulation of cortical dendrite development by Rap1 signaling. Mol Cell Neurosci 28: 215–228.

    CAS  PubMed  Google Scholar 

  • Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, et al. 2006. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314: 140–143.

    CAS  PubMed  Google Scholar 

  • Cohen-Cory S, Dreyfus CF, Black IB. 1991. NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J Neurosci 11: 462–471.

    CAS  PubMed  Google Scholar 

  • Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, et al. 1995. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375: 235–238.

    CAS  PubMed  Google Scholar 

  • Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, et al. 1994. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001–1011.

    CAS  PubMed  Google Scholar 

  • DeFazio RA, Pong K, Knusel B, Walsh JP. 2000. Neurotrophin-4/5 promotes dendritic outgrowth and calcium currents in cultured mesencephalic dopamine neurons. Neuroscience 99: 297–304.

    CAS  PubMed  Google Scholar 

  • Dijkhuizen PA, Ghosh A. 2005a. BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. J Neurobiol 62: 278–288.

    CAS  Google Scholar 

  • Dijkhuizen PA, Ghosh A. 2005b. Regulation of dendritic growth by calcium and neurotrophin signaling. Prog Brain Res 147: 17–27.

    CAS  Google Scholar 

  • Dreyfus CF. 1989. Effects of nerve growth factor on cholinergic brain neurons. Trends Pharmacol Sci 10: 145–149.

    CAS  PubMed  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, et al. 2003. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112: 257–269.

    CAS  PubMed  Google Scholar 

  • Ernfors P, Lee KF, Jaenisch R. 1994a. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368: 147–150.

    CAS  Google Scholar 

  • Ernfors P, Lee KF, Kucera J, Jaenisch R. 1994b. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77: 503–512.

    CAS  Google Scholar 

  • Ernfors P, Merlio JP, Persson H. 1992. Cells Expressing mRNA for Neurotrophins and their Receptors During Embryonic Rat Development. Eur J Neurosci 4: 1140–1158.

    PubMed  Google Scholar 

  • Fan G, Copray S, Huang EJ, Jones K, Yan Q, et al. 2000. Formation of a full complement of cranial proprioceptors requires multiple neurotrophins. Dev Dyn 218: 359–370.

    CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF. 1994. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369: 658–661.

    CAS  PubMed  Google Scholar 

  • Gao WQ, Zheng JL, Karihaloo M. 1995. Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. J Neurosci 15: 2656–2667.

    CAS  PubMed  Google Scholar 

  • Gascon E, Vutskits L, Zhang H, Barral-Moran MJ, Kiss PJ, et al. 2005. Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur J Neurosci 21: 69–80.

    CAS  PubMed  Google Scholar 

  • Ghosh A, Carnahan J, Greenberg ME. 1994. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263: 1618–1623.

    CAS  PubMed  Google Scholar 

  • Gillespie LN. 2003. Regulation of axonal growth and guidance by the neurotrophin family of neurotrophic factors. Clin Exp Pharmacol Physiol 30: 724–733.

    CAS  PubMed  Google Scholar 

  • Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, et al. 1996. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci 7: 222–238.

    CAS  PubMed  Google Scholar 

  • Gorski JA, Zeiler SR, Tamowski S, Jones KR. 2003. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23: 6856–6865.

    CAS  PubMed  Google Scholar 

  • Greferath U, Bennie A, Kourakis A, Bartlett PF, Murphy M, et al. 2000. Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. Eur J Neurosci 12: 885–893.

    CAS  PubMed  Google Scholar 

  • Hartikka J, Hefti F. 1988. Development of septal cholinergic neurons in culture: Plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J Neurosci 8: 2967–2985.

    CAS  PubMed  Google Scholar 

  • Hartmann M, Heumann R, Lessmann V. 2001. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J 20: 5887–5897.

    CAS  PubMed  Google Scholar 

  • Hatten ME. 1999. Central nervous system neuronal migration. Annu Rev Neurosci 22: 511–539.

    CAS  PubMed  Google Scholar 

  • Hatten ME. 2002. New directions in neuronal migration. Science 297: 1660–1663.

    CAS  PubMed  Google Scholar 

  • Hirai H, Launey T. 2000. The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J Neurosci 20: 5217–5224.

    CAS  PubMed  Google Scholar 

  • Horch HW, Katz LC. 2002. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5: 1177–1184.

    CAS  PubMed  Google Scholar 

  • Horch HW, Kruttgen A, Portbury SD, Katz LC. 1999. Destabilization of cortical dendrites and spines by BDNF. Neuron 23: 353–364.

    CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF. 2001. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 24: 677–736.

    CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF. 2003. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 72: 609–642.

    CAS  PubMed  Google Scholar 

  • Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, et al. 1991. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–232.

    CAS  PubMed  Google Scholar 

  • Jin X, Hu H, Mathers PH, Agmon A. 2003. Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J Neurosci 23: 5662–5673.

    CAS  PubMed  Google Scholar 

  • Jones KR, Farinas I, Backus C, Reichardt LF. 1994. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–999.

    CAS  PubMed  Google Scholar 

  • Klein R, Martin-Zanca D, Barbacid M, Parada LF. 1990. Expression of the tyrosine kinase receptor gene trkB is confined to the murine embryonic and adult nervous system. Development 109: 845–850.

    CAS  PubMed  Google Scholar 

  • Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, et al. 1994. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368: 249–251.

    CAS  PubMed  Google Scholar 

  • Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, et al. 1993. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75: 113–122.

    CAS  PubMed  Google Scholar 

  • Kohara K, Kitamura A, Adachi N, Nishida M, Itami C, et al. 2003. Inhibitory but not excitatory cortical neurons require presynaptic brain-derived neurotrophic factor for dendritic development, as revealed by chimera cell culture. J Neurosci 23: 6123–6131.

    CAS  PubMed  Google Scholar 

  • Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL. 1993. Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10: 359–367.

    CAS  PubMed  Google Scholar 

  • Kremer NE, D’Arcangelo G, Thomas SM, DeMarco M, Brugge JS, et al. 1991. Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of src and ras actions. J Cell Biol 115: 809–819.

    CAS  PubMed  Google Scholar 

  • Kucera J, Ernfors P, Walro J, Jaenisch R. 1995. Reduction in the number of spinal motor neurons in neurotrophin-3-deficient mice. Neuroscience 69: 321–330.

    CAS  PubMed  Google Scholar 

  • Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY. 2005. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25: 11288–11299.

    CAS  PubMed  Google Scholar 

  • Kuo G, Arnaud L, Kronstad-O’Brien P, Cooper JA. 2005. Absence of Fyn and Src causes a reeler-like phenotype. J Neurosci 25: 8578–8586.

    CAS  PubMed  Google Scholar 

  • Kuruvilla R, Ye H, Ginty DD. 2000. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27: 499–512.

    CAS  PubMed  Google Scholar 

  • Lamballe F, Smeyne RJ, Barbacid M. 1994. Developmental expression of trkC, the neurotrophin-3 receptor, in the mammalian nervous system. J Neurosci 14: 14–28.

    CAS  PubMed  Google Scholar 

  • Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, et al. 1992. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69: 737–749.

    CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL. 2001. Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948.

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Angeletti PU. 1968. Nerve growth factor. Physiol Rev 48: 534–569.

    CAS  PubMed  Google Scholar 

  • Liu X, Ernfors P, Wu H, Jaenisch R. 1995. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375: 238–241.

    CAS  PubMed  Google Scholar 

  • Liu X, Jaenisch R. 2000. Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5. Dev Dyn 218: 94–101.

    CAS  PubMed  Google Scholar 

  • Lom B, Cogen J, Sanchez AL, Vu T, Cohen-Cory S. 2002. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J Neurosci 22: 7639–7649.

    CAS  PubMed  Google Scholar 

  • Lom B, Cohen-Cory S. 1999. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J Neurosci 19: 9928–9938.

    CAS  PubMed  Google Scholar 

  • Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, et al. 1990. NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron 5: 501–509.

    CAS  PubMed  Google Scholar 

  • Marin-Padilla M. 1971. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134: 117–145.

    CAS  PubMed  Google Scholar 

  • Marin O, Rubenstein JL. 2003. Cell migration in the forebrain. Annu Rev Neurosci 26: 441–483.

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Numakawa T, Adachi N, Yokomaku D, Yamagishi S, et al. 2001. Brain-derived neurotrophic factor enhances depolarization-evoked glutamate release in cultured cortical neurons. J Neurochem 79: 522–530.

    CAS  PubMed  Google Scholar 

  • McAllister AK. 2001. Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life Sci 58: 1054–1060.

    CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC. 1996. Neurotrophin regulation of cortical dendritic growth requires activity. Neuron 17: 1057–1064.

    CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC. 1997. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18: 767–778.

    CAS  PubMed  Google Scholar 

  • McAllister AK, Katz LC, Lo DC. 1999. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22: 295–318.

    CAS  PubMed  Google Scholar 

  • McAllister AK, Lo DC, Katz LC. 1995. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15: 791–803.

    CAS  PubMed  Google Scholar 

  • Medina DL, Sciarretta C, Calella AM, Von Bohlen Und Halbach O, Unsicker K, et al. 2004. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J 23: 3803–3814.

    CAS  PubMed  Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, et al. 2002. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36: 121–137.

    CAS  PubMed  Google Scholar 

  • Minichiello L, Klein R. 1996. TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev 10: 2849–2858.

    CAS  PubMed  Google Scholar 

  • Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, et al. 1999. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24: 401–414.

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Yamauchi J, Tanoue A, Wu C, Mobley WC. 2006. TrkB binds and tyrosine-phosphorylates Tiam1, leading to activation of Rac1 and induction of changes in cellular morphology. Proc Natl Acad Sci USA 103: 10444–10449.

    CAS  PubMed  Google Scholar 

  • Morfini G, DiTella MC, Feiguin F, Carri N, Caceres A. 1994. Neurotrophin-3 enhances neurite outgrowth in cultured hippocampal pyramidal neurons. J Neurosci Res 39: 219–232.

    CAS  PubMed  Google Scholar 

  • Naumann T, Casademunt E, Hollerbach E, Hofmann J, Dechant G, et al. 2002. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J Neurosci 22: 2409–2418.

    CAS  PubMed  Google Scholar 

  • Nery S, Fishell G, Corbin JG. 2002. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5: 1279–1287.

    CAS  PubMed  Google Scholar 

  • Niblock MM, Brunso-Bechtold JK, Riddle DR. 2000. Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20: 4165–4176.

    CAS  PubMed  Google Scholar 

  • Oppenheim RW, Yin QW, Prevette D, Yan Q. 1992. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360: 755–757.

    CAS  PubMed  Google Scholar 

  • Paul CE, Vereker E, Dickson KM, Barker PA. 2004. A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 24: 1917–1923.

    CAS  PubMed  Google Scholar 

  • Peterson DA, Dickinson-Anson HA, Leppert JT, Lee KF, Gage FH. 1999. Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. J Comp Neurol 404: 1–20.

    CAS  PubMed  Google Scholar 

  • Peterson DA, Leppert JT, Lee KF, Gage FH. 1997. Basal forebrain neuronal loss in mice lacking neurotrophin receptor p75. Science 277: 837–839.

    CAS  PubMed  Google Scholar 

  • Polleux F, Whitford KL, Dijkhuizen PA, Vitalis T, Ghosh A. 2002. Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. Development 129: 3147–3160.

    CAS  PubMed  Google Scholar 

  • Rabacchi SA, Kruk B, Hamilton J, Carney C, Hoffman JR, et al. 1999. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. J Neurobiol 40: 254–269.

    CAS  PubMed  Google Scholar 

  • Rajagopal R, Chao MV. 2006. A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling. Mol Cell Neurosci 33: 36–46.

    CAS  PubMed  Google Scholar 

  • Rakic P. 1975. Timing of major ontogenetic events in the visual cortex of the rhesus monkey. UCLA Forum Med Sci: 3–40.

    Google Scholar 

  • Rakic P, Stensas LJ, Sayre E, Sidman RL. 1974. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature 250: 31–34.

    CAS  PubMed  Google Scholar 

  • Rico B, Xu B, Reichardt LF. 2002. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 5: 225–233.

    CAS  PubMed  Google Scholar 

  • Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, et al. 1998. BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 21: 305–315.

    CAS  PubMed  Google Scholar 

  • Rocamora N, Garcia-Ladona FJ, Palacios JM, Mengod G. 1993. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Brain Res Mol Brain Res 17: 1–8.

    CAS  PubMed  Google Scholar 

  • Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA. 1997. Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19: 269–281.

    CAS  PubMed  Google Scholar 

  • Schwyzer L, Mateos JM, Abegg M, Rietschin L, Heeb L, et al. 2002. Physiological and morphological plasticity induced by chronic treatment with NT-3 or NT-4/5 in hippocampal slice cultures. Eur J Neurosci 16: 1939–1948.

    PubMed  Google Scholar 

  • Segal RA, Takahashi H, McKay RD. 1992. Changes in neurotrophin responsiveness during the development of cerebellar granule neurons. Neuron 9: 1041–1052.

    CAS  PubMed  Google Scholar 

  • Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA. 1992. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360: 757–759.

    CAS  PubMed  Google Scholar 

  • Shimada A, Mason CA, Morrison ME. 1998. TrkB signaling modulates spine density and morphology independent of dendrite structure in cultured neonatal Purkinje cells. J Neurosci 18: 8559–8570.

    CAS  PubMed  Google Scholar 

  • Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M. 1997. Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9: 2045–2056.

    CAS  PubMed  Google Scholar 

  • Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, et al. 1994. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246–249.

    CAS  PubMed  Google Scholar 

  • Snider WD. 1994. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 77: 627–638.

    PubMed  Google Scholar 

  • Thoenen H. 1995. Neurotrophins and neuronal plasticity. Science 270: 593–598.

    CAS  PubMed  Google Scholar 

  • Thoenen H, Barde YA. 1980. Physiology of nerve growth factor. Physiol Rev 60: 1284–1335.

    CAS  PubMed  Google Scholar 

  • Timmusk T, Belluardo N, Persson H, Metsis M. 1994. Developmental regulation of brain-derived neurotrophic factor messenger RNAs transcribed from different promoters in the rat brain. Neuroscience 60: 287–291.

    CAS  PubMed  Google Scholar 

  • Tsuruda A, Suzuki S, Maekawa T, Oka S. 2004. Constitutively active Src facilitates NGF-induced phosphorylation of TrkA and causes enhancement of the MAPK signaling in SK-N-MC cells. FEBS Lett 560: 215–220.

    CAS  PubMed  Google Scholar 

  • Van der CE, Zee Ross GM, Riopelle RJ, Hagg T. 1996. Survival of cholinergic forebrain neurons in developing p75NGFR-deficient mice. Science 274: 1729–1732.

    Google Scholar 

  • von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, et al. 2001. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4: 977–978.

    CAS  PubMed  Google Scholar 

  • Wang XH, Poo MM. 1997. Potentiation of developing synapses by postsynaptic release of neurotrophin-4. Neuron 19: 825–835.

    CAS  PubMed  Google Scholar 

  • Ward NL, Hagg T. 1999. p75(NGFR) and cholinergic neurons in the developing forebrain: A re-examination. Brain Res Dev Brain Res 118: 79–91.

    CAS  PubMed  Google Scholar 

  • Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, et al. 1986. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci USA 83: 9231–9235.

    CAS  PubMed  Google Scholar 

  • Wirth MJ, Brun A, Grabert J, Patz S, Wahle P. 2003. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Development 130: 5827–5838.

    CAS  PubMed  Google Scholar 

  • Xu B, Zang K, Ruff NL, Zhang YA, McConnell SK, et al. 2000. Cortical degeneration in the absence of neurotrophin signaling: Dendritic retraction and neuronal loss after removal of the receptor TrkB. Neuron 26: 233–245.

    CAS  PubMed  Google Scholar 

  • Yacoubian TA, Lo DC. 2000. Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3: 342–349.

    CAS  PubMed  Google Scholar 

  • Yan Q, Elliott J, Snider WD. 1992. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360: 753–755.

    CAS  PubMed  Google Scholar 

  • Yeo TT, Chua-Couzens J, Butcher LL, Bredesen DE, Cooper JD, et al. 1997. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J Neurosci 17: 7594–7605.

    CAS  PubMed  Google Scholar 

  • York RD, Yao H, Dillon T, Ellig CL, Eckert SP, et al. 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392: 622–626.

    CAS  PubMed  Google Scholar 

  • Yoshizawa M, Kawauchi T, Sone M, Nishimura YV, Terao M, et al. 2005. Involvement of a Rac activator, P-Rex1, in neurotrophin-derived signaling and neuronal migration. J Neurosci 25: 4406–4419.

    CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, et al. 2005. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25: 9989–9999.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from NIH (NS21072 and HD23315). D.B.P. is supported by a postdoctoral fellowship from “Fundação Portuguesa para a Ciência e a Tecnologia.”

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pereira, D.B., Chao, M.V. (2008). Neurotrophins and Central Nervous System Development. In: Lajtha, A., Perez-Polo, J.R., Rossner, S. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32671-9_1

Download citation

Publish with us

Policies and ethics