Skip to main content

Neuroendocrine Control of Food Intake

  • Chapter
Overweight and the Metabolic Syndrome

Part of the book series: Endocrine Updates ((ENDO,volume 26))

5. Summary

With the rising prevalence of obesity and insulin resistance syndrome, the need for understanding how humans regulate body weight has grown considerably. The interaction between peripheral signals of energy status from the gut or adipose tissue with neural signals in order to maintain energy homeostasis is enormously complex. Here we have described several, but by no means all, of the molecules involved in this process and how we think they function. Clearly some of these molecules, such as insulin and leptin, are extremely important for normal human health whereas the roles of others may be less critical although still important. For instance, despite the significant role of leptin in physiology, only a handful of obese people have been reported to have defective leptin signaling. So despite its key role as an adipokine leptin, it is unlikely to be the major cause of common human obesity. As insulin resistance syndrome and obesity are likely to be polygenic disorders, it is possible that still more molecules await discovery. The more important task for the future, perhaps, will be to decipher the underlying interactions between all of these signals in order to form a clear picture of the neuroendocrine regulation of food intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005;308(5724):1043–1045.

    PubMed  CAS  Google Scholar 

  2. Collins S, Martin TL, Surwit RS, Robidoux J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: Physiological and molecular characteristics. Physiol Behav 2004;81(2):243–248.

    PubMed  CAS  Google Scholar 

  3. Schemmel R, Mickelsen O, Gill JL. Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. J Nutr 1970;100(9):1041–108.

    PubMed  CAS  Google Scholar 

  4. Reaven GM. Why syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab 2005;1(1):9–14.

    PubMed  CAS  Google Scholar 

  5. Saper C, Chou T, Elmquist J. The need to feed. Homeostatic and hedonic control of eating. Neuron 2002;36(2):199.

    PubMed  CAS  Google Scholar 

  6. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005;8(5):571–578.

    PubMed  CAS  Google Scholar 

  7. Grill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002;23(1):2–40.

    PubMed  CAS  Google Scholar 

  8. Cone RD, Low MJ, Elmquist JK, Cameron JL. Neuroendocrinology. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, eds. Williams Textbook of Endocrinology, 10th edn. Philadelphia: Saunders, 2003;81–176.

    Google Scholar 

  9. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci 2004;7(5):493–494.

    PubMed  Google Scholar 

  10. Muroya S, Funahashi H, Yamanaka A, et al. Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: Orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 2004;19(6):1524–1534.

    PubMed  Google Scholar 

  11. Mieda M, Yanagisawa M. Sleep, feeding, and neuropeptides: Roles of orexins and orexin receptors. Curr Opin Neurobiol 2002;12(3):339–345.

    PubMed  CAS  Google Scholar 

  12. Yamanaka A, Beuckmann CT, Willie JT, et al. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 2003;38(5):701–713.

    PubMed  CAS  Google Scholar 

  13. Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 2004;24(46):10493–10501.

    PubMed  CAS  Google Scholar 

  14. Barsh GS, Schwartz MW. Genetic approaches to studying energy balance: Perception and integration. Nat Rev Genet 2002;3(8):589–600.

    PubMed  CAS  Google Scholar 

  15. Jobst EE, Enriori PJ, Cowley MA. The electrophysiology of feeding circuits. Trends Endocrinol Metab 2004;15(10):488–499.

    PubMed  CAS  Google Scholar 

  16. Zigman JM, Elmquist JK. Minireview: From anorexia to obesity—the yin and yang of body weight control. Endocrinology 2003;144(9):3749–3756.

    PubMed  CAS  Google Scholar 

  17. Travagli RA, Hermann GE, Browning KN, Rogers RC. Musings on the wanderer: What’s new in our understanding of vago-vagal reflexes? III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. Am J Physiol Gastrointest Liver Physiol 2003;284(2):G180–G187.

    PubMed  CAS  Google Scholar 

  18. Morton GJ, Blevins JE, Williams DL, et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Invest 2005;115(3):703–710.

    PubMed  CAS  Google Scholar 

  19. Small CJ, Bloom SR. Gut hormones and the control of appetite. Trends Endocrinol Metab 2004;15(6):259–263.

    PubMed  CAS  Google Scholar 

  20. Tschop M, Castaneda TR, Joost HG, et al. Physiology: Does gut hormone PYY 3–36 decrease food intake in rodents? Nature 2004;430(6996): 1 p following 165; discussion 2 p following

    Google Scholar 

  21. Halatchev IG, Cone RD. Peripheral administration of PYY(3–36) produces conditioned taste aversion in mice. Cell Metab 2005;1(3):159–168.

    PubMed  CAS  Google Scholar 

  22. Kinzig KP, D’Alessio DA, Herman JP, et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 2003;23(15):6163–6170.

    PubMed  CAS  Google Scholar 

  23. Kinzig KP, D’Alessio DA, Seeley RJ. The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness. J Neurosci 2002;22(23):10470–10476

    PubMed  CAS  Google Scholar 

  24. Lachey JL, D’Alessio DA, Rinaman L, Elmquist JK, Drucker DJ, Seeley RJ. The role of central glucagon-like peptide-1 in mediating the effects of visceral illness: Differential effects in rats and mice. Endocrinology 2005;146(1):458–462.

    PubMed  CAS  Google Scholar 

  25. Moran TH. Gut peptides in the control of food intake: 30 years of ideas. Physiol Behav 2004;82(1):175–180.

    PubMed  CAS  Google Scholar 

  26. Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol 2004;286(2):G183–G188.

    PubMed  CAS  Google Scholar 

  27. Schwartz GJ. Biology of eating behavior in obesity. Obes Res 2004;12(Suppl 2):102S–106S.

    PubMed  Google Scholar 

  28. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973;84(3):488–495.

    PubMed  CAS  Google Scholar 

  29. Larsson LI, Rehfeld JF. Distribution of gastrin and CCK cells in the rat gastrointestinal tract. Evidence for the occurrence of three distinct cell types storing COOH-terminal gastrin immunoreactivity. Histochemistry 1978;58(1–2):23–31.

    PubMed  CAS  Google Scholar 

  30. Liddle RA. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Physiol 1995;269(3 Pt 1):G319–G327.

    PubMed  CAS  Google Scholar 

  31. Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 1985;75(4):1144–1152.

    PubMed  CAS  Google Scholar 

  32. Moran TH, McHugh PR. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am J Physiol 1982;242(5):R491–R497.

    PubMed  CAS  Google Scholar 

  33. West DB, Fey D, Woods SC. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 1984;246(5 Pt 2):R776–R787.

    PubMed  CAS  Google Scholar 

  34. Antin J, Gibbs J, Holt J, Young RC, Smith GP. Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J Comp Physiol Psychol 1975;89(7):784–790.

    PubMed  CAS  Google Scholar 

  35. Schwartz GJ, McHugh PR, Moran TH. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am J Physiol 1991;261(1 Pt 2):R64–R69.

    PubMed  CAS  Google Scholar 

  36. Smith GP, Jerome C, Norgren R. Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats. Am J Physiol 1985;249(5 Pt 2):R638–R641.

    PubMed  CAS  Google Scholar 

  37. Chen DY, Deutsch JA, Gonzalez MF, Gu Y. The induction and suppression of c-fos expression in the rat brain by cholecystokinin and its antagonist L364,718. Neurosci Lett 1993;149(1):91–94.

    PubMed  CAS  Google Scholar 

  38. Fraser KA, Davison JS. Cholecystokinin-induced c-fos expression in the rat brain stem is influenced by vagal nerve integrity. Exp Physiol 1992;77(1):225–228.

    PubMed  CAS  Google Scholar 

  39. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokininmediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 2004;7(4):335–336.

    PubMed  CAS  Google Scholar 

  40. Tatemoto K, Mutt V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 1980;285(5764):417–418.

    PubMed  CAS  Google Scholar 

  41. Medeiros MD, Turner AJ. Processing and metabolism of peptide-YY: Pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 1994;134(5):2088–2094.

    PubMed  CAS  Google Scholar 

  42. Dumont Y, Fournier A, St-Pierre S, Quirion R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31,Pro34]peptide YY and [125I]peptide YY3-36 as selective Y1 and Y2 radioligands. J Pharmacol Exp Ther 1995;272(2):673–680.

    PubMed  CAS  Google Scholar 

  43. Grandt D, Schimiczek M, Rascher W, et al. Neuropeptide Y 3-36 is an endogenous ligand selective for Y2 receptors. Regul Pept 1996;67(1):33–37.

    PubMed  CAS  Google Scholar 

  44. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann NY Acad Sci 2003;994:162–168.

    PubMed  CAS  Google Scholar 

  45. Marsh DJ, Hollopeter G, Huszar D, et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999;21(1):119–122.

    PubMed  CAS  Google Scholar 

  46. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002;418(6898):650–654.

    PubMed  CAS  Google Scholar 

  47. Cowley MA, Cone RD, Enriori P, Louiselle I, Williams SM, Evans AE. Electrophysiological actions of peripheral hormones on melanocortin neurons. Ann NY Acad Sci 2003;994:175–186.

    PubMed  CAS  Google Scholar 

  48. Halatchev IG, Ellacott KL, Fan W, Cone RD. PYY3-36 inhibits food intake through a melanocortin-4 receptor-independent mechanism. Endocrinology 2004.

    Google Scholar 

  49. Challis BG, Coll AP, Yeo GS, et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3’36). Proc Natl Acad Sci USA 2004;101(13):4695–4700.

    PubMed  CAS  Google Scholar 

  50. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 1985;89(5):1070–1077.

    PubMed  CAS  Google Scholar 

  51. Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: Characterization of a radioimmunoassay recognizing PYY 1–36 and PYY 3–36. Regul Pept 1994;51(2):151–159.

    PubMed  CAS  Google Scholar 

  52. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402(6762):656–660.

    PubMed  CAS  Google Scholar 

  53. Tomasetto C, Karam SM, Ribieras S, et al. Identification and characterization of a novel gastric peptide hormone: The motilin-related peptide. Gastroenterology 2000;119(2):395–405.

    PubMed  CAS  Google Scholar 

  54. Wortley KE, Anderson KD, Garcia K, et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 2004;101(21):8227–8232.

    PubMed  CAS  Google Scholar 

  55. Bailey AR, Von Englehardt N, Leng G, Smith RG, Dickson SL. Growth hormone secretagogue activation of the arcuate nucleus and brainstem occurs via a non-noradrenergic pathway. J Neuroendocrinol 2000;12(3):191–197.

    PubMed  CAS  Google Scholar 

  56. Dickson SL, Luckman SM. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology 1997;138(2):771–777.

    PubMed  CAS  Google Scholar 

  57. Guan XM, Yu H, Palyha OC, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 1997;48(1):23–29.

    PubMed  CAS  Google Scholar 

  58. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000;407(6806):908–913.

    PubMed  CAS  Google Scholar 

  59. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 2000;141(11):4325–4328.

    PubMed  CAS  Google Scholar 

  60. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP). Endocrinology 2004.

    Google Scholar 

  61. Tschop M, Statnick MA, Suter TM, Heiman ML. GH-releasing peptide-2 increases fat mass in mice lacking NPY: Indication for a crucial mediating role of hypothalamic agoutirelated protein. Endocrinology 2002;143(2):558–568.

    PubMed  CAS  Google Scholar 

  62. Druce MR, Wren AM, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes Relat Metab Disord 2005.

    Google Scholar 

  63. Neary NM, Small CJ, Wren AM, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: Acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 2004;89(6):2832–2836.

    PubMed  CAS  Google Scholar 

  64. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001;86(12):5992.

    PubMed  CAS  Google Scholar 

  65. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001;50(8):1714–1719.

    PubMed  CAS  Google Scholar 

  66. le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab 2005;90(2):1068–1071.

    PubMed  Google Scholar 

  67. Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol 2003;23(22):7973–7981.

    PubMed  CAS  Google Scholar 

  68. Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA 1987;84(23):8628–8632.

    PubMed  CAS  Google Scholar 

  69. Kahn SE, D’Alessio DA, Schwartz MW, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 1990;39(5):634–638.

    PubMed  CAS  Google Scholar 

  70. Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 1989;32(4):240–244.

    PubMed  CAS  Google Scholar 

  71. Lutz TA. Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets 2005;6(2):181–189.

    PubMed  CAS  Google Scholar 

  72. Reda TK, Geliebter A, Pi-Sunyer FX. Amylin, food intake, and obesity. Obes Res 2002;10(10):1087–1091.

    PubMed  CAS  Google Scholar 

  73. Rushing PA. Central amylin signaling and the regulation of energy homeostasis. Curr Pharm Des 2003;9(10):819–825.

    PubMed  CAS  Google Scholar 

  74. Chapman I, Parker B, Doran S, et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 2005;48(5):838–848.

    PubMed  CAS  Google Scholar 

  75. Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002;54(2):233–246.

    PubMed  CAS  Google Scholar 

  76. Christopoulos G, Perry KJ, Morfis M, et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 1999;56(1):235–242.

    PubMed  CAS  Google Scholar 

  77. D’Agostino D, Cordle RA, Kullman J, Erlanson-Albertsson C, Muglia LJ, Lowe ME. Decreased postnatal survival and altered body weight regulation in procolipase-deficient mice. J Biol Chem 2002;277(9):7170–7177.

    PubMed  CAS  Google Scholar 

  78. Erlanson-Albertsson C, York D. Enterostatin—a peptide regulating fat intake. Obes Res 1997;5(4):360–372.

    PubMed  CAS  Google Scholar 

  79. Liu M, Shen L, Tso P. The role of enterostatin and apolipoprotein AIV on the control of food intake. Neuropeptides 1999;33(5):425–433.

    PubMed  CAS  Google Scholar 

  80. Mei J, Sorhede-Winzell M, Erlanson-Albertsson C. Plasma enterostatin: Identification and release in rats in response to a meal. Obes Res 2002;10(7):688–694.

    PubMed  CAS  Google Scholar 

  81. Prasad C, Imamura M, Debata C, Svec F, Sumar N, Hermon-Taylor J. Hyperenterostatinemia in premenopausal obese women. J Clin Endocrinol Metab 1999;84(3):937–941.

    PubMed  CAS  Google Scholar 

  82. Rossner S, Barkeling B, Erlanson-Albertsson C, Larsson P, Wahlin-Boll E. Intravenous enterostatin does not affect single meal food intake in man. Appetite 1995;24(1):37–42.

    PubMed  CAS  Google Scholar 

  83. Park M, Lin L, Thomas S, et al. The F1-ATPase beta-subunit is the putative enterostatin receptor. Peptides 2004;25(12):2127–2133.

    PubMed  CAS  Google Scholar 

  84. Nagase H, Nakajima A, Sekihara H, York DA, Bray GA. Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: The involvement of vagal-central nervous system interactions. J Gastroenterol 2002;37(Suppl 14):118–127.

    PubMed  CAS  Google Scholar 

  85. Drucker DJ. Minireview: The glucagon-like peptides. Endocrinology 2001;142(2):521–527.

    PubMed  CAS  Google Scholar 

  86. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28(5):1092–1100.

    PubMed  CAS  Google Scholar 

  87. Anastasi A, Erspamer V, Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971;27(2):166–167.

    PubMed  CAS  Google Scholar 

  88. Gibbs J, Smith GP. The actions of bombesin-like peptides on food intake. Ann NY Acad Sci 1988;547:210–216.

    PubMed  CAS  Google Scholar 

  89. Muurahainen NE, Kissileff HR, Pi-Sunyer FX. Intravenous infusion of bombesin reduces food intake in humans. Am J Physiol 1993;264(2 Pt 2):R350–R354.

    PubMed  CAS  Google Scholar 

  90. Wada E, Way J, Lebacq-Verheyden AM, Battey JF. Neuromedin B and gastrin-releasing peptide mRNAs are differentially distributed in the rat nervous system. J Neurosci 1990;10(9):2917–2930.

    PubMed  CAS  Google Scholar 

  91. Fathi Z, Corjay MH, Shapira H, et al. BRS-3: A novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 1993;268(8):5979–5984.

    PubMed  CAS  Google Scholar 

  92. Hampton LL, Ladenheim EE, Akeson M, et al. Loss of bombesin-induced feeding suppression in gastrin-releasing peptide receptor-deficient mice. Proc Natl Acad Sci USA 1998;95(6):3188–3192.

    PubMed  CAS  Google Scholar 

  93. Ohki-Hamazaki H, Sakai Y, Kamata K, et al. Functional properties of two bombesinlike peptide receptors revealed by the analysis of mice lacking neuromedin B receptor. J Neurosci 1999;19(3):948–954.

    PubMed  CAS  Google Scholar 

  94. Wada E, Watase K, Yamada K, et al. Generation and characterization of mice lacking gastrin-releasing peptide receptor. Biochem Biophys Res Commun 1997;239(1):28–33.

    PubMed  CAS  Google Scholar 

  95. Ladenheim EE, Hampton LL, Whitney AC, White WO, Battey JF, Moran TH. Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. J Endocrinol 2002;174(2):273–281.

    PubMed  CAS  Google Scholar 

  96. Ohki-Hamazaki H, Watase K, Yamamoto K, et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 1997;390(6656):165–169.

    PubMed  CAS  Google Scholar 

  97. Dakin CL, Small CJ, Batterham RL, et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 2004;145(6):2687–2695.

    PubMed  CAS  Google Scholar 

  98. Cohen MA, Ellis SM, Le Roux CW, et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003;88(10):4696–4701.

    PubMed  CAS  Google Scholar 

  99. Wynne K, Park AJ, Small CJ, et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: A double-blind, randomized, controlled trial. Diabetes 2005;54(8):2390–2395.

    PubMed  CAS  Google Scholar 

  100. Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature 1998;394(6695):790–793.

    PubMed  CAS  Google Scholar 

  101. Peters JH, McKay BM, Simasko SM, Ritter RC. Leptin-induced satiation mediated by abdominal vagal afferents. Am J Physiol Regul Integr Comp Physiol 2005;288(4):R879–R884.

    PubMed  CAS  Google Scholar 

  102. Ladenheim EE, Emond M, Moran TH. Leptin enhances feeding suppression and neural activation produced by systemically administered bombesin. Am J Physiol Regul Integr Comp Physiol 2005;289(2):R473–R477.

    PubMed  CAS  Google Scholar 

  103. Rajala MW, Scherer PE. Minireview: The adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 2003;144(9):3765–3773.

    PubMed  CAS  Google Scholar 

  104. Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann NY Acad Sci 2002;967:363–378.

    PubMed  CAS  Google Scholar 

  105. Munzberg H, Myers MG Jr. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 2005;8(5):566–570.

    PubMed  Google Scholar 

  106. Farooqi IS, O’Rahilly S. Monogenic human obesity syndromes. Recent Prog Horm Res 2004;59:409–424.

    PubMed  CAS  Google Scholar 

  107. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004;10(7):734–738.

    PubMed  CAS  Google Scholar 

  108. Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 2004;10(7):739–743.

    PubMed  CAS  Google Scholar 

  109. Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 2002;26(4):393–428.

    PubMed  Google Scholar 

  110. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000;404(6778):661–671.

    PubMed  CAS  Google Scholar 

  111. Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci 2003;4(11):901–909.

    PubMed  CAS  Google Scholar 

  112. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 1953;140(901):578–596.

    PubMed  CAS  Google Scholar 

  113. Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973;9(4):294–298.

    PubMed  CAS  Google Scholar 

  114. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372(6505):425–432.

    PubMed  CAS  Google Scholar 

  115. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 1995;269(5223):546–549.

    PubMed  CAS  Google Scholar 

  116. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997;94(16):8878–8883.

    PubMed  CAS  Google Scholar 

  117. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269(5223):543–546.

    PubMed  CAS  Google Scholar 

  118. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995;269(5223):540–543.

    PubMed  CAS  Google Scholar 

  119. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG. Identification of targets of leptin action in rat hypothalamus. J Clin Invest 1996;98(5):1101–1106.

    PubMed  CAS  Google Scholar 

  120. Schwartz MW, Seeley RJ, Woods SC, et al. Leptin increases hypothalamic proopiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997;46(12):2119–2123.

    PubMed  CAS  Google Scholar 

  121. Seeley RJ, van Dijk G, Campfield LA, et al. Intraventricular leptin reduces food intake and body weight of lean rats but not obese Zucker rats. Horm Metab Res 1996;28(12):664–668.

    PubMed  CAS  Google Scholar 

  122. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83(7):1263–1271.

    PubMed  CAS  Google Scholar 

  123. Woods SC, Chavez M, Park CR, et al. The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci Biobehav Rev 1996;20(1):139–144.

    PubMed  CAS  Google Scholar 

  124. Polonsky KS, Given BD, Hirsch L, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest 1988;81(2):435–441.

    PubMed  CAS  Google Scholar 

  125. Woods SC, Lotter EC, McKay LD, Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 1979;282(5738):503–505.

    PubMed  CAS  Google Scholar 

  126. Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289(5487):2122–2125.

    PubMed  CAS  Google Scholar 

  127. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002;5(6):566–572.

    PubMed  CAS  Google Scholar 

  128. Cone RD, Lu D, Koppula S, et al. The melanocortin receptors: Agonists, antagonists, and the hormonal control of pigmentation. Recent Prog Horm Res 1996;51:287–317.

    PubMed  CAS  Google Scholar 

  129. De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005.

    Google Scholar 

  130. Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2002;283(4):R941–R948.

    PubMed  Google Scholar 

  131. Levin BE, Dunn-Meynell AA, Banks WA. Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol Regul Integr Comp Physiol 2004;286(1):R143–150.

    PubMed  CAS  Google Scholar 

  132. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, et al. PTP1B regulates leptin signal transduction in vivo. Dev Cell 2002;2(4):489–495.

    PubMed  CAS  Google Scholar 

  133. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003;37(4):649–661.

    PubMed  CAS  Google Scholar 

  134. Heisler LK, Cowley MA, Tecott LH, et al. Activation of central melanocortin pathways by fenfluramine. Science 2002;297(5581):609–611.

    PubMed  CAS  Google Scholar 

  135. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001;411(6836):480–484.

    PubMed  CAS  Google Scholar 

  136. Ibrahim N, Bosch MA, Smart JL, et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 2003;144(4):1331–1340.

    PubMed  CAS  Google Scholar 

  137. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999;5(9):1066–1070.

    PubMed  CAS  Google Scholar 

  138. Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: Three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003;88(10):4633–4640.

    PubMed  CAS  Google Scholar 

  139. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998;19(2):155–157.

    PubMed  CAS  Google Scholar 

  140. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD. Cholecystokininmediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 2004.

    Google Scholar 

  141. Williams DL, Kaplan JM, Grill HJ. The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology 2000;141(4):1332–1337.

    PubMed  CAS  Google Scholar 

  142. Grill HJ, Ginsberg AB, Seeley RJ, Kaplan JM. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J Neurosci 1998;18(23):10128–10135.

    PubMed  CAS  Google Scholar 

  143. Takahashi KA, Cone RD. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agoutirelated protein neurons. Endocrinology 2005;146(3):1043–1047.

    PubMed  CAS  Google Scholar 

  144. Segal-Lieberman G, Bradley RL, Kokkotou E, et al. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc Natl Acad Sci USA 2003;100(17):10085–10090.

    PubMed  CAS  Google Scholar 

  145. Ludwig DS, Tritos NA, Mastaitis JW, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 2001;107(3):379–386.

    PubMed  CAS  Google Scholar 

  146. Ludwig DS, Mountjoy KG, Tatro JB, et al. Melanin-concentrating hormone: A functional melanocortin antagonist in the hypothalamus. Am J Physiol 1998;274(4 Pt 1):E627–E633.

    PubMed  CAS  Google Scholar 

  147. Qu D, Ludwig DS, Gammeltoft S, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996;380(6571):243–247.

    PubMed  CAS  Google Scholar 

  148. Rossi M, Choi SJ, O’Shea D, Miyoshi T, Ghatei MA, Bloom SR. Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 1997;138(1):351–355.

    PubMed  CAS  Google Scholar 

  149. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92(4):573–585.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Butler, A.A., Trevaskis, J.L., Morrison, C.D. (2006). Neuroendocrine Control of Food Intake. In: Bray, G.A., Ryan, D.H. (eds) Overweight and the Metabolic Syndrome. Endocrine Updates, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32164-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32164-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32163-9

  • Online ISBN: 978-0-387-32164-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics