Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

The quest to understand the nature of light is centuries old and today there can be at least three answers to the single question of what light is depending on the experiment used to investigate lightʼs nature: (i) light consists of rays that propagate, e.g., rectilinear in homogeneous media, (ii) light is an electromagnetic wave, (iii) light consists of small portions of energy, or so-called photons. The first property will be treated in the chapter about geometrical optics, which can be interpreted as a special case of wave optics for very small wavelengths. On the other hand, the interpretation as photons is unexplainable with wave optics and, above all, contradictory to wave optics. Only the theory of quantum mechanics and quantum field theory can simultaneously explain light as photons and electromagnetic waves. The field of optics treating this subject is generally called quantum optics.

In this chapter about wave optics the electromagnetic property of light is treated and the basic equations describing all relevant electromagnetic phenomena are Maxwellʼs equations. Starting with the Maxwell equations, the wave equation and the Helmholtz equation will be derived. Here, we will try to make a tradeoff between theoretical exactness and a practical approach. For an exact analysis see, e.g., [3.1]. After this, some basic properties of light waves like polarization, interference, and diffraction will be described. The propagation of coherent scalar waves is especially important in optics. Therefore, the section about diffraction will treat several propagation methods like the method of the angular spectrum of plane waves, which can be easily implemented on a computer, or the well-known diffraction integrals of Fresnel–Kirchhoff as well as Fresnel and Fraunhofer. In modern physics and engineering, lasers are very important and therefore the propagation of a coherent laser beam is of special interest. A good approximation for a laser beam is a Hermite–Gaussian mode and the propagation of a fundamental Gaussian beam can be performed very easily if some approximations of paraxial optics are valid. The formulae for this are treated in the last section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CCD:

charge-coupled device

GRIN:

gradient index

OPD:

optical path difference

PC:

photonic crystal

PSF:

point spread function

SI:

Système International

TEM:

transverse electric magnetic

References

  1. M. Born, E. Wolf: Principles of Optics, 6th edn. (Cambridge University Press, Cambridge 1997)

    Google Scholar 

  2. R. W. Boyd: Nonlinear Optics (Academic, San Diego 2003)

    Google Scholar 

  3. A. Yariv, P. Yeh: Optical Waves in Crystals (Wiley, New York 1984)

    Google Scholar 

  4. A. E. Siegman: Propagating modes in gain-guided optical fibers, J. Opt. Soc. Am. A 20, 1617–1628 (2003)

    Article  ADS  Google Scholar 

  5. J. W. Goodman: Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, New York 1996)

    Google Scholar 

  6. H. Haferkorn: Optik, 4th edn. (Wiley-VCH, Weinheim 2003)

    Google Scholar 

  7. E. Hecht: Optics, 3rd edn. (Addison-Wesley, Reading 1998)

    Google Scholar 

  8. M. V. Klein, Th. E. Furtak: Optics, 2nd edn. (Wiley, New York 1986)

    Google Scholar 

  9. V. N. Mahajan: Optical Imaging and Aberrations, Part II: Wave Diffraction Optics (SPIE Press, Bellingham 2001)

    Book  Google Scholar 

  10. D. Marcuse: Light Transmission Optics, 2nd edn. (Van Nostrand, New York 1982)

    Google Scholar 

  11. A. E. Siegman: Lasers (University Science Books, Mill Valley 1986)

    Google Scholar 

  12. R. A. Chipman: Polarization analysis of optical systems, Opt. Eng. 28, 90–99 (1989)

    ADS  Google Scholar 

  13. R. A. Chipman: Mechanics of polarization ray tracing, Opt. Eng. 34, 1636–1645 (1995)

    Article  ADS  Google Scholar 

  14. E. Waluschka: Polarization ray trace, Opt. Eng. 28, 86–89 (1989)

    ADS  Google Scholar 

  15. R. C. Jones: A new calculus for the treatment of optical systems, J. Opt. Soc. Am. 31, 488–503 (1941)

    Article  ADS  Google Scholar 

  16. J. W. Goodman: Statistical Optics (Wiley, New York 1985)

    Google Scholar 

  17. M. Françon: Optical Interferometry (Academic, New York 1984)

    Google Scholar 

  18. P. Hariharan: Optical Interferometry (Academic, Sydney 1985)

    Google Scholar 

  19. D. Malacara (Ed.): Optical Shop Testing, 2nd edn. (Wiley, New York 1991)

    Google Scholar 

  20. D. W. Robinson, G. T. Reid (Eds.): Interferogram Analysis (IOP Publ., Bristol 1993)

    Google Scholar 

  21. C. M. Haaland: Laser electron acceleration in vacuum, Opt. Commun. 114, 280–284 (1995)

    Article  ADS  Google Scholar 

  22. Y. C. Huang, R. L. Byer: A proposed high-gradient laser-driven electron accelerator using crossed cylindrical laser focusing, Appl. Phys. Lett. 69, 2175–2177 (1996)

    Article  ADS  Google Scholar 

  23. R. Dändliker: Two-Reference-Beam Holographic Interferometry. In: Holographic Interferometry, ed. by P. K. Rastogi (Springer, Berlin, Heidelberg 1994) pp. 75–108

    Google Scholar 

  24. R. Dändliker: Heterodyne Holographic Interferometry, Prog. Opt., Vol. 17, ed. by E. Wolf (Elsevier, New York 1980) pp. 1–84

    Google Scholar 

  25. G. Schulz, J. Schwider: Interferometric Testing of Smooth Surfaces, Prog. Opt., Vol. 13, ed. by E. Wolf (Elsevier, New York 1976) pp. 93–167

    Google Scholar 

  26. J. Schwider: Advanced Evaluation Techniques in Interferometry, Prog. Opt., Vol. 28, ed. by E. Wolf (Elsevier, New York 1990) pp. 271–359

    Google Scholar 

  27. W. H. Steel: Two-Beam Interferometry, Prog. Opt., Vol. 5, ed. by E. Wolf (Elsevier, New York 1966) pp. 145–197

    Google Scholar 

  28. H. J. Tiziani: Optical metrology of engineering surfaces – scope and trends. In: Optical Measurement Techniques and Applications, ed. by P. K. Rastogi (Artech House, Norwood 1997) pp. 15–50

    Google Scholar 

  29. O. Bryngdahl: Applications of Shearing Interferometry, Prog. Opt., Vol. 4, ed. by E. Wolf (Elsevier, New York 1965) pp. 37–83

    Google Scholar 

  30. H. Sickinger, O. Falkenstörfer, N. Lindlein, J. Schwider: Characterization of microlenses using a phase-shifting shearing interferometer, Opt. Eng. 33, 2680–2686 (1994)

    Article  ADS  Google Scholar 

  31. K. Creath: Phase-Mesurement Interferometry Techniques, Prog. Opt., Vol. 26, ed. by E. Wolf (Elsevier, New York 1988) pp. 349–393

    Google Scholar 

  32. A. Hettwer, J. Kranz, J. Schwider: Three channel phase-shifting interferometer using polarization-optics and a diffraction grating, Opt. Eng. 39, 960–966 (2000)

    Article  ADS  Google Scholar 

  33. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs: Focusing light to a tighter spot, Opt. Commun. 179, 1–7 (2000)

    Article  ADS  Google Scholar 

  34. B. Richards, E. Wolf: Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. A 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  35. M. Françon: Diffraction (Pergamon, Oxford 1966)

    Google Scholar 

  36. J. E. Harvey: Fourier treatment of near-field scalar diffraction theory, Am. J. Phys. 47, 974–980 (1979)

    ADS  Google Scholar 

  37. E. Lalor: Conditions for the validity of the angular spectrum of plane waves, J. Opt. Soc. Am. 58, 1235–1237 (1968)

    Article  ADS  Google Scholar 

  38. U. Vokinger: Propagation, modification, analysis of partially coherent light fields. Dissertation (University of Neuchatel (UFO), Allensbach 2000)

    Google Scholar 

  39. J. J. Stamnes: Waves in Focal Regions (Hilger, Bristol 1986)

    MATH  Google Scholar 

  40. H. J. Caulfield: Handbook of Optical Holography (Academic, New York 1979)

    Google Scholar 

  41. P. Hariharan: Basics of Holography (Cambridge University Press, Cambridge 2002)

    Book  Google Scholar 

  42. E. N. Leith, J. Upatnieks: Recent Advances in Holography, Prog. Opt., Vol. 6, ed. by E. Wolf (Elsevier, New York 1967) pp. 1–52

    Google Scholar 

  43. G. Saxby: Practical Holography (Prentice Hall, New York 1988)

    Book  Google Scholar 

  44. B. R. Brown, A. W. Lohmann: Computer generated binary holograms, IBM J. 13, 160–168 (1969)

    Article  Google Scholar 

  45. O. Bryngdahl, F. Wyrowski: Digital holography – Computer-Generated Holograms, Prog. Opt., Vol. 28, ed. by E. Wolf (Elsevier, New York 1990) pp. 1–86

    Google Scholar 

  46. H. P. Herzig: Micro-Optics (Taylor & Francis, London 1997)

    Google Scholar 

  47. B. Kress, P. Meyrueis: Digital Diffractive Optics (Wiley, Chichester 2000)

    Google Scholar 

  48. W.-H. Lee: Computer-Generated Holograms: Techniques, Applications, Prog. Opt., Vol. 16, ed. by E. Wolf (Elsevier, New York 1978) pp. 119–232

    Google Scholar 

  49. D. Maystre: Rigorous Vector Theories of Diffraction Gratings, Prog. Opt., Vol. 11, ed. by E. Wolf (Elsevier, New York 1984) pp. 1–67

    Google Scholar 

  50. S. Sinzinger, J. Jahns: Microoptics (Wiley-VCH, Weinheim 1999)

    Google Scholar 

  51. I. N. Bronstein, K. A. Semendjajew: Taschenbuch der Mathematik, 23rd edn. (Thun, Frankfurt 1987)

    Google Scholar 

  52. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling: Numerical Recipes in C (Cambridge University Press, Cambridge 1991) pp. 398–470

    Google Scholar 

  53. B. Besold, N. Lindlein: Fractional Talbot effect for periodic microlens arrays, Opt. Eng. 36, 1099–1105 (1997)

    Article  ADS  Google Scholar 

  54. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs: The focus of light-theoretical calculation and experimental tomographic reconstruction, Appl. Phys. B 72, 109–113 (2001)

    Article  ADS  Google Scholar 

  55. M. Mansuripur: Distribution of light at and near the focus of high-numerical-aperture objectives, J. Opt. Soc. Am. A 3, 2086–2093 (1986)

    Article  ADS  Google Scholar 

  56. M. Mansuripur: Distribution of light at and near the focus of high-numerical-aperture objectives: Erratum, J. Opt. Soc. Am. A 10, 382–383 (1993)

    Article  ADS  Google Scholar 

  57. R. Dorn, S. Quabis, G. Leuchs: The focus of light – linear polarization breaks the rotational symmetry of the focal spot, J. Mod. Opt. 50, 1917–1926 (2003)

    ADS  MathSciNet  Google Scholar 

  58. H. Kogelnik, T. Li: Laser beams and resonators, Appl. Opt. 5, 1550–1567 (1966)

    Article  ADS  Google Scholar 

  59. W. Brouwer: Matrix Methods in Optical Instrument Design (Benjamin, New York 1964)

    Google Scholar 

  60. A. Gerrard, J. M. Burch: Introduction to Matrix Methods in Optics (Wiley, London 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norbert Lindlein Ph.D. or Gerd Leuchs Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC New York

About this entry

Cite this entry

Lindlein, N., Leuchs, G. (2007). Wave Optics. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30420-5_3

Download citation

Publish with us

Policies and ethics