Skip to main content

Cerebral Endothelial Cell Reaction to Ischemic Insults

  • Reference work entry
  • First Online:
Book cover Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Clinical as well as basic research in the past decades has revealed the crucial importance of cerebral endothelial cell (CEC) dysfunction contributing to secondary injury following primary brain ischemic insults. Multiple postischemic events including inflammation, blood–brain barrier (BBB) breakdown, vasogenic brain edema, and hemorrhagic transformation are known to worsen the clinical outcomes of stroke patients, all of which are closely associated with CEC dysfunction. Oxidative stress with excessive production of reactive oxygen species (ROS) or free radicals has been considered to be one of the major factors in causing ischemic brain damages. In this chapter, we first discuss the sources of ROS and its contribution to vascular injury as well as recent progresses using antioxidant enzymes, most notably SOD and catalase, to attenuate ischemic injury. Cerebral ischemia results in damages of the brain vasculature with breaching of the normally impermeable BBB, thereby leading to vasogenic brain edema after stroke. We then review the potential importance of several proteins known to be involved in BBB breakdown after stroke, including matrix metalloproteinases (MMPs), endothelin, vascular endothelial growth factor (VEGF), angiopoietin, and nitric oxide synthase (NOS). Postischemic inflammatory reaction is another detrimental event causing secondary vascular injury, and thus exacerbating the primary ischemic damage. CEC dysfunction may promote adherence and infiltration of inflammatory cells, including neutrophils, macrophages, lymphocytes, and platelets. Therefore, cell and protein mediators contributing to postischemic inflammation are discussed. We also discuss several redox‐sensitive transcription factors including hypoxia‐inducible factor‐1 (HIF‐1), nuclear factor kappa‐B (NF‐κB), and activator protein‐1 (AP‐1) that are activated after cerebral ischemia to alter CEC viability and postischemic angiogenesis. Finally, potential therapeutic strategies such as statins, ischemic preconditioning (IPC) or LPS preconditioning, and prostaglandins that have been shown to exert protective effects in the settings of cerebral ischemia via mechanisms involving endothelial functions are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

apoptosis‐inducing factor

AP‐1:

activator protein‐1

Ang‐1:

angiopoietin‐1

ATM:

ataxia telangectasia

BBB:

blood‐brain barrier

BDNF:

brain‐derived neutrophic factor

CEC:

cerebral endothelial cells

CNS:

central nervous system

COX‐1:

cycloxygenase‐1

CRP:

C‐reactive protein

Cu/Zn‐SOD:

copper/zinc superoxide dismutase

eNOS:

endothelial nitric oxide synthase

EPO:

erythropoietin

ERK:

extracellular signal‐regulated kinase

ET‐1:

endothelin‐1

FRA:

Fos‐related antigen

GC:

guanylate cyclase

GR:

glucocorticoid receptor

GSNO:

S‐nitrosoglutathione

HIF:

hypoxia‐inducible factor

HMG:

3‐hydroxy‐3‐methylglutaryl

HO‐1:

heme oxygenase‐1

HRE:

hypoxia‐response element

ICAM‐1:

intercellular adhesion molecule‐1

iNOS:

inducible nitric oxide synthase

IPC:

ischemic preconditioning

JNK:

c‐Jun N‐terminal kinase

L‐NA:

N(omega)‐nitro‐L‐arginine

L‐NAME:

N(G)‐nitro‐L‐arginine methyl ester

LPS:

lipopolysaccharide

MAPK:

mitogen‐activated protein kinase

MCAO:

middle cerebral artery occlusion

MMP:

matrix metalloproteinase

Mn‐SOD:

manganese superoxide dismutase

NAC:

N‐acetylcysteine

NAD:

nicotinamide adenine dinucleotide

NADPH:

reduced form of nicotinamide adenine dinucleotide phosphate

NF‐κB:

nuclear factor kappa‐B

nNOS:

neuronal nitric oxide synthase

NO:

nitric oxide

NOS:

nitric oxide synthase

OGD:

oxygen‐glucose deprivation

PARP‐1:

poly(ADP‐ribose) polymerase‐1

PGI2 :

prostacyclin

PGIS:

prostacyclin synthase

PI3K:

phosphatidylinositol 3‐kinase

PPAR‐γ:

peroxisome proliferators‐activated receptor‐gamma

rhVEGF:

recombinant human vascular endothelial growth factor

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

SOD:

superoxide dismutase

Stat:

signal transducer and activator of transcription

tPA:

tissue plasminogen activator

TSP‐1:

thrombospondin‐1

TWEAK:

tumor necrosis factor‐like weak inducer of apoptosis

VCAM‐1:

vascular cell adhesion molecule‐1

VEGF:

vascular endothelial growth factor

References

  • Ahmed SH, He YY, Nassief A, Xu J, Xu XM, et al. 2000. Effects of lipopolysaccharide priming on acute ischemic brain injury. Stroke 31: 193–199.

    Article  CAS  PubMed  Google Scholar 

  • Akaji K, Suga S, Fujino T, Mayanagi K, Inamasu J, et al. 2003. Effect of intra‐ischemic hypothermia on the expression of c‐Fos and c‐Jun, and DNA binding activity of AP‐1 after focal cerebral ischemia in rat brain. Brain Res 975: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Akins PT, Liu PK, Hsu CY. 1996. Immediate early gene expression in response to cerebral ischemia. Friend or foe? Stroke 27: 1682–1687.

    CAS  PubMed  Google Scholar 

  • Amin‐Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, et al. 2001. Mevastatin, an HMG‐CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32: 980–986.

    Article  PubMed  Google Scholar 

  • An G, Lin TN, Liu JS, Xue JJ, He YY, et al. 1993. Expression of c‐fos and c‐jun family genes after focal cerebral ischemia. Ann Neurol 33: 457–464.

    Article  CAS  PubMed  Google Scholar 

  • Armstead WM, Mirro R, Busija DW, Leffler CW. 1988. Postischemic generation of superoxide anion by newborn pig brain. Am J Physiol 255: H401–H403.

    Article  CAS  PubMed  Google Scholar 

  • Atochin DN, Clark J, Demchenko IT, Moskowitz MA, Huang PL. 2003. Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke 34: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  • Batteur‐Parmentier S, Margaill I, Plotkine M. 2000. Modulation by nitric oxide of cerebral neutrophil accumulation after transient focal ischemia in rats. J Cereb Blood Flow Metab 20: 812–819.

    Article  PubMed  Google Scholar 

  • Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH. 2000. Expression of angiopoietin‐1, angiopoietin‐2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 157: 1473–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beetsch JW, Park TS, Dugan LL, Shah AR, Gidday JM. 1998. Xanthine oxidase‐derived superoxide causes reoxygenation injury of ischemic cerebral endothelial cells. Brain Res 786: 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR. 1999. Induction of hypoxia‐inducible factor‐1 (HIF‐1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11: 4159–4170.

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, et al. 2002. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia‐inducible factor‐1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Bian LG, Zhang TX, Zhao WG, Shen JK, Yang GY. 1994. Increased endothelin‐1 in the rabbit model of middle cerebral artery occlusion. Neurosci Lett 174: 47–50.

    Article  CAS  PubMed  Google Scholar 

  • Butler TL, Pennypacker KR. 2004. Temporal and regional expression of Fos‐related proteins in response to ischemic injury. Brain Res Bull 63: 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Cardenas A, Moro MA, Hurtado O, Leza JC, Lorenzo P, et al. 2000. Implication of glutamate in the expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. J Neurochem 74: 2041–2048.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JE, Howard EF, Hess DC, Wakade CG, Chen Q, et al. 1998. Nuclear factor‐kappa B activation during cerebral reperfusion: Effect of attenuation with N‐acetylcysteine treatment. Brain Res Mol Brain Res 56: 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Chan PH. 1996. Role of oxidants in ischemic brain damage. Stroke 27: 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  • Chan PH, Fishman RA, Wesley MA, Longar S. 1990. Pathogenesis of vasogenic edema in focal cerebral ischemia. Role of superoxide radicals. Adv Neurol 52: 177–183.

    CAS  PubMed  Google Scholar 

  • Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, et al. 1998. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18: 8292–8299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TC, Huang CJ, Tam K, Chen SF, Tan KT, et al. 2005. Stabilization of hypoxia‐inducible factor‐1{alpha} by prostacyclin under prolonged hypoxia via reducing reactive oxygen species level in endothelial cells. J Biol Chem 280: 36567–36574.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zacharek A, Zhang C, Jiang H, Li Y, et al. 2005a. Endothelial nitric oxide synthase regulates brain‐derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci 25: 2366–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhang C, Jiang H, Li Y, Zhang L, et al. 2005b. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Chen SD, Hu CJ, Yang DI, Nassief A, Chen H, et al. 2005c. Pravastatin attenuates ceramide‐induced cytotoxicity in mouse cerebral endothelial cells with HIF‐1 activation and VEGF upregulation. Ann N Y Acad Sci 1042: 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Park EM, Kim Y, Liu N, Gal J, et al. 2001. Early c‐Fos induction after cerebral ischemia: A possible neuroprotective role. J Cereb Blood Flow Metab 21: 550–556.

    Article  CAS  PubMed  Google Scholar 

  • Coulet F, Nadaud S, Agrapart M, Soubrier F. 2003. Identification of hypoxia‐response element in the human endothelial nitric‐oxide synthase gene promoter. J Biol Chem 278: 46230–46240.

    Article  CAS  PubMed  Google Scholar 

  • Endres M, Laufs U, Huang Z, Nakamura T, Huang P, et al. 1998. Stroke protection by 3‐hydroxy‐3‐methylglutaryl (HMG)‐CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95: 8880–8885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endres M, Meisel A, Biniszkiewicz D, Namura S, Prass K, et al. 2000. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20: 3175–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian RH, Kent TA. 1999. Superoxide anion production during reperfusion is reduced by an antineutrophil antibody after prolonged cerebral ischemia. Free Radic Biol Med 26: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Fabian RH, DeWitt DS, Kent TA. 1995. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab 15: 242–247.

    Article  CAS  PubMed  Google Scholar 

  • Fang YC, Wu JS, Chen JJ, Cheung WM, Tseng PH, et al. 2006. Induction of prostacyclin/PGI(2) synthase expression after cerebral ischemia–reperfusion. J Cereb Blood Flow Metab 26: 491–501.

    Google Scholar 

  • Fujimura M, Morita‐Fujimura Y, Kawase M, Copin JC, Calagui B, et al. 1999. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19: 3414–3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya K, Zhu L, Kawahara N, Abe O, Kirino T. 2005. Differences in infarct evolution between lipopolysaccharide‐induced tolerant and nontolerant conditions to focal cerebral ischemia. J Neurosurg 103: 715–723.

    Article  PubMed  Google Scholar 

  • Gajkowska B, Mossakowski MJ. 1995. Localization of endothelin in the blood‐brain interphase in rat hippocampus after global cerebral ischemia. Folia Neuropathol 33: 221–230.

    CAS  PubMed  Google Scholar 

  • Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, et al. 2005. Leukocyte‐derived matrix metalloproteinase‐9 mediates blood‐brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol 289: H558–H568.

    Article  CAS  PubMed  Google Scholar 

  • Gidday JM, Shah AR, Maceren RG, Wang Q, Pelligrino DA, et al. 1999. Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab 19: 331–340.

    Article  CAS  PubMed  Google Scholar 

  • Gursoy‐Ozdemir Y, Bolay H, Saribas O, Dalkara T. 2000. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 31:1974–1980; discussion 1981.

    Article  PubMed  Google Scholar 

  • Gursoy‐Ozdemir Y, Can A, Dalkara T. 2004. Reperfusion‐induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35: 1449–1453.

    Article  PubMed  CAS  Google Scholar 

  • Hara H, Ayata C, Huang PL, Waeber C, Ayata G, et al. 1997. [3H]L‐NG‐nitroarginine binding after transient focal ischemia and NMDA‐induced excitotoxicity in type I and type III nitric oxide synthase null mice. J Cereb Blood Flow Metab 17: 515–526.

    Article  CAS  PubMed  Google Scholar 

  • Howard EF, Chen Q, Cheng C, Carroll JE, Hess D. 1998. NF‐kappa B is activated and ICAM‐1 gene expression is upregulated during reoxygenation of human brain endothelial cells. Neurosci Lett 248: 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Hu CJ, Chen SD, Yang DI, Lin TN, Chen CM, et al. 2006. Promoter region methylation and reduced expression of thrombospondin‐1 after oxygen‐glucose deprivation in murine cerebral endothelial cells. J Cereb Blood Flow Metab (in press).

    Google Scholar 

  • Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, et al. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Cooper D, Russell J, Salter JW, Zhang JH, et al. 2003. Molecular determinants of the prothrombogenic and inflammatory phenotype assumed by the postischemic cerebral microcirculation. Stroke 34: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  • Jin KL, Mao XO, Greenberg DA. 2000a. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97: 10242–10247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA. 2000b. Induction of vascular endothelial growth factor and hypoxia‐inducible factor‐1alpha by global ischemia in rat brain. Neuroscience 99: 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L. 1999. Regulation of the hypoxia‐inducible transcription factor 1alpha by the ubiquitin‐proteasome pathway. J Biol Chem 274: 6519–6525.

    Article  CAS  PubMed  Google Scholar 

  • Kawase M, Murakami K, Fujimura M, Morita‐Fujimura Y, Gasche Y, et al. 1999. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30: 1962–1968.

    Article  CAS  PubMed  Google Scholar 

  • Kaya D, Gursoy‐Ozdemir Y, Yemisci M, Tuncer N, Aktan S, et al. 2005. VEGF protects brain against focal ischemia without increasing blood‐brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25: 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Koh JT, Kim MY, Ahn KY, Kim JK, et al. 2002. Expression of brain‐specific angiogenesis inhibitor 2 (BAI2) in normal and ischemic brain: involvement of BAI2 in the ischemia‐induced brain angiogenesis. J Cereb Blood Flow Metab 22: 1054–1067.

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, et al. 2005. S‐Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 25: 177–192.

    Article  CAS  PubMed  Google Scholar 

  • Kilic E, Kilic U, Matter CM, Luscher TF, Bassetti CL, et al. 2005a. Aggravation of focal cerebral ischemia by tissue plasminogen activator is reversed by 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitor but does not depend on endothelial NO synthase. Stroke 36: 332–336.

    Article  CAS  PubMed  Google Scholar 

  • Kilic U, Bassetti CL, Kilic E, Xing H, Wang Z, et al. 2005b. Post‐ischemic delivery of the 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitor rosuvastatin protects against focal cerebral ischemia in mice via inhibition of extracellular‐regulated kinase‐1/‐2. Neuroscience 134: 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Koh G. 2000. Lipopolysaccharide activates matrix metalloproteinase‐2 in endothelial cells through an NF‐kappa B‐dependent pathway. Biochem Biophys Res Commun 269: 401–405.

    Article  CAS  PubMed  Google Scholar 

  • Kinuta Y, Kimura M, Itokawa Y, Ishikawa M, Kikuchi H. 1989. Changes in xanthine oxidase in ischemic rat brain. J Neurosurg 71: 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, et al. 1997. Reduction of CuZn‐superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17: 4180–4189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT. 1992. Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol 263: H1234–H1242.

    Article  CAS  PubMed  Google Scholar 

  • Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. 1994. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25: 1794–1798.

    Article  CAS  PubMed  Google Scholar 

  • Kurushima H, Ohno M, Miura T, Nakamura TY, Horie H, et al. 2005. Selective induction of DeltaFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin‐1, and the implication of DeltaFosB and galectin‐1 in neuroprotection and neurogenesis. Cell Death Differ 12: 1078–1096.

    Article  CAS  PubMed  Google Scholar 

  • Laufs U, Gertz K, Dirnagl U, Bohm M, Nickenig G, et al. 2002. Rosuvastatin, a new HMG‐CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res 942: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Laufs U, Gertz K, Huang P, Nickenig G, Bohm M, et al. 2000. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31: 2442–2449.

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Lo EH. 2003. Interactions between p38 mitogen‐activated protein kinase and caspase‐3 in cerebral endothelial cell death after hypoxia‐reoxygenation. Stroke 34: 2704–2709.

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Lo EH. 2004. Induction of caspase‐mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia‐reoxygenation. J Cereb Blood Flow Metab 24: 720–727.

    Article  CAS  PubMed  Google Scholar 

  • Limbourg FP, Huang Z, Plumier JC, Simoncini T, Fujioka M, et al. 2002. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids. J Clin Invest 110: 1729–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Lin TN, Cheung WM, Nian GM, Tseng PH, et al. 2002. Cyclooxygenase‐1 and bicistronic cyclooxygenase‐1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 105: 1962–1969.

    Article  CAS  PubMed  Google Scholar 

  • Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, et al. 2006. 15d‐prostaglandin J2 protects brain from ischemia–reperfusion injury. Arterioscler Thromb Vasc Biol 26: 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Lin TN, Nian GM, Chen SF, Cheung WM, Chang C, et al. 2001. Induction of Tie‐1 and Tie‐2 receptor protein expression after cerebral ischemia–reperfusion. J Cereb Blood Flow Metab 21: 690–701.

    Article  CAS  PubMed  Google Scholar 

  • Lin TN, Te J, Huang HC, Chi SI, Hsu CY. 1997. Prolongation and enhancement of postischemic c‐fos expression after fasting. Stroke 28: 412–418.

    Article  CAS  PubMed  Google Scholar 

  • Lin TN, Wang CK, Cheung WM, Hsu CY. 2000. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia–reperfusion. J Cereb Blood Flow Metab 20: 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Liu PK, Salminen A, He YY, Jiang MH, Xue JJ, et al. 1994. Suppression of ischemia‐induced fos expression and AP‐1 activity by an antisense oligodeoxynucleotide to c‐fos mRNA. Ann Neurol 36: 566–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Zhang ZG, Zhang L, Morris DC, Kapke A, et al. 2005. Atorvastatin downregulates tissue plasminogen activator‐aggravated genes mediating coagulation and vascular permeability in single cerebral endothelial cells captured by laser microdissection. J Cereb Blood Flow Metab 26: 787–796.

    Google Scholar 

  • Lo AC, Chen AY, Hung VK, Yaw LP, Fung MK, et al. 2005. Endothelin‐1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end‐feet. J Cereb Blood Flow Metab 25: 998–1011.

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Hawkins BJ, Milovanova T, Bhanumathy CD, Joseph SK, et al. 2005. Selective role for superoxide in InsP3 receptor‐mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol 170: 1079–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, et al. 2000. Hypoxia‐induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156: 965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masada T, Hua Y, Xi G, Ennis SR, Keep RF. 2001. Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21: 22–33.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Abe T, Wu JL, Fujiki M, Kobayashi H. 2005. Hypoxia‐inducible factor‐1alpha DNA induced angiogenesis in a rat cerebral ischemia model. Neurol Res 27: 503–508.

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Asano T, Matsui T, Muramatsu H, Ueda M, et al. 1999. Intraluminal increase of superoxide anion following transient focal cerebral ischemia in rats. Brain Res 816: 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, et al. 2003. Regulation of hypoxia‐inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 14: 524–534.

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Kondo T, Epstein CJ, Chan PH. 1997. Overexpression of CuZn‐superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. Stroke 28: 1797–1804.

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Kondo T, Kawase M, Li Y, Sato S, et al. 1998. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18: 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CW, Wei EP, Povlishock JT, Kontos HA, Moskowitz MA. 1992. Oxygen radicals in cerebral ischemia. Am J Physiol 263: H1356–H1362.

    CAS  PubMed  Google Scholar 

  • Pereira MP, Hurtado O, Cardenas A, Bosca L, Castillo J, et al. 2006. Rosiglitazone and 15‐deoxy‐Delta(12,14)‐prostaglandin J(2) cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 26: 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Pichiule P, Chavez JC, LaManna JC. 2004. Hypoxic regulation of angiopoietin‐2 expression in endothelial cells. J Biol Chem 279: 12171–12180.

    Article  CAS  PubMed  Google Scholar 

  • Polavarapu R, Gongora MC, Winkles JA, Yepes M. 2005. Tumor necrosis factor‐like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor‐kappaB pathway activation. J Neurosci 25: 10094–10100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, et al. 2003. Hypoxia‐induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Puisieux F, Deplanque D, Pu Q, Souil E, Bastide M, et al. 2000. Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide‐induced brain ischemic tolerance. Eur J Pharmacol 389: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. 1998. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase‐9 reduces infarct size. Stroke 29: 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Liu PK, Hsu CY. 1995. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212: 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. 1998. Hypoxia‐inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev 8: 588–594.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. 2001a. HIF‐1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13: 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL. 2001b. HIF‐1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sironi L, Cimino M, Guerrini U, Calvio AM, Lodetti B, et al. 2003. Treatment with statins after induction of focal ischemia in rats reduces the extent of brain damage. Arterioscler Thromb Vasc Biol 23: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka K, Nogawa S, Dembo T, Kosakai A, et al. 2001. Phosphorylation of signal transducer and activator of transcription‐3 (Stat3) after focal cerebral ischemia in rats. Exp Neurol 170: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, et al. 1997. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28: 2252–2258.

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL. 1995. Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Dawson VL, Zweier JL. 1999. Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. Biochim Biophys Acta 1455: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield PC, Williams R, Pickard JD. 1999. Delayed induction of JunB precedes CA1 neuronal death after global ischemia in the gerbil. Brain Res 818: 450–458.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, He L, Ahmed SH, Chen SW, Goldberg MP, et al. 2000. Oxygen‐glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. Stroke 31: 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wu Y, He L, Yang Y, Moore SA, et al. 1997. Regulation of cytokine‐induced iNOS expression by a hairpin oligonucleotide in murine cerebral endothelial cells. Biochem Biophys Res Commun 235: 394–397.

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Huang Z, Dalkara T, Endres M, Laufs U, et al. 2000. Endothelial nitric oxide synthase‐dependent cerebral blood flow augmentation by L‐arginine after chronic statin treatment. J Cereb Blood Flow Metab 20: 709–717.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Ogata H, Hamaguchi S, Kitajima T. 1998. Superoxide radical generation and histopathological changes in hippocampal CA1 after ischaemia/reperfusion in gerbils. Can J Anaesth 45: 226–232.

    Article  CAS  PubMed  Google Scholar 

  • Yang DI, Chen S, Ezekiel UR, Xu J, Wu Y, et al. 2005a. Antisense RNA to inducible nitric oxide synthase reduces cytokine‐mediated brain endothelial cell death. Ann N Y Acad Sci 1042: 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Chan PH, Chen J, Carlson E, Chen SF, et al. 1994. Human copper‐zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25: 165–170.

    Article  PubMed  Google Scholar 

  • Yang YT, Ju TC, Yang DI. 2005b. Induction of hypoxia inducible factor‐1 attenuates metabolic insults induced by 3‐nitropropionic acid in rat C6 glioma cells. J Neurochem 93: 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Yin KJ, Chen SD, Lee JM, Xu J, Hsu CY. 2002. ATM gene regulates oxygen‐glucose deprivation‐induced nuclear factor‐kappaB DNA‐binding activity and downstream apoptotic cascade in mouse cerebrovascular endothelial cells. Stroke 33: 2471–2477.

    Article  CAS  PubMed  Google Scholar 

  • Yip PK, He YY, Hsu CY, Garg N, Marangos P, et al. 1991. Effect of plasma glucose on infarct size in focal cerebral ischemia–reperfusion. Neurology 41: 899–905.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Tanaka J, Yang L, Sakanaka M, Hata R, et al. 2004. Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia‐inducible factor‐1. Neuroscience 126: 433–440.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Rui YC, Yang PY, Lu L, Li TJ. 2006. C‐reactive protein induced expression of adhesion molecules in cultured cerebral microvascular endothelial cells. Life Sci 78: 2983‐2988.

    Google Scholar 

  • Zhang R, Wang L, Zhang L, Chen J, Zhu Z, et al. 2003. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res 92: 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang X, Park TS, Gidday JM. 2005. Cerebral endothelial cell apoptosis after ischemia–reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab 25: 868–877.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Tsang W, Zhang L, Powers C, Chopp M. 2001. Up‐regulation of neuropilin‐1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 21: 541–549.

    Article  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Croll SD, Chopp M. 2002a. Angiopoietin‐1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113: 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, et al. 2000. VEGF enhances angiogenesis and promotes blood‐brain barrier leakage in the ischemic brain. J Clin Invest 106: 829–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZG, Zhang L, Tsang W, Soltanian‐Zadeh H, Morris D, et al. 2002b. Correlation of VEGF and angiopoietin expression with disruption of blood‐brain barrier and angiogenesisafter focal cerebral ischemia. J Cereb Blood Flow Metab 22: 379–392.

    Article  CAS  PubMed  Google Scholar 

  • Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, et al. 2006. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12: 441–445.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Zuo Z. 2005. Prenatal hypoxia‐induced adaptation and neuroprotection that is inducible nitric oxide synthase‐dependent. Neurobiol Dis 20: 871–880.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Yang, D. et al. (2007). Cerebral Endothelial Cell Reaction to Ischemic Insults. In: Lajtha, A., Chan, P.H. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30383-3_10

Download citation

Publish with us

Policies and ethics