Skip to main content

Neurochemistry of the Gustatory System

  • Reference work entry
  • First Online:

Abstract:

The sense of taste is mediated by receptor mechanisms that are distributed on modified epithelial cells within structures called taste buds, which are located on the tongue and other parts of the oral cavity. These cells are innervated by branches of one of three cranial nerves, including the chorda tympani and greater superficial petrosal branches of VII, the lingual-tonsillar branch of IX, and the superior laryngeal branch of X. These nerves project into the rostral portion of the nucleus of the solitary tract (NST) of the medulla. Gustatory information is carried from there to oral motor circuits within the brainstem and to the parabrachial nuclei (PbN) of the pons, from which pathways arise to thalamus and insular cortex and also into areas of the limbic forebrain, including the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), and the bed nucleus of the stria terminalis (BST). Taste buds contain cells that can be classified into types on ultrastructural grounds and these in turn have been shown to exhibit expression of a wide array of molecules, many of which are characteristic of a particular cell type. The transduction of chemical stimuli by taste receptor cells is mediated by several different mechanisms. Salts and acids interact directly with ion channels to depolarize receptor cells, whereas sweet- and bitter-tasting stimuli and amino acids interact with G-protein-coupled receptors of the T1R and T2R families, linked to second-messenger pathways. Although some of these receptors appear to be segregated into different cells, the electrophysiological and calcium imaging data show that taste bud cells are often responsive to stimuli of more than one quality. This multiple sensitivity is evident to an even greater degree in first-order nerve fibers and in central gustatory neurons, due to convergence of afferent input onto higher-order neurons. Afferent input into the NST appears to be mediated by glutamate and most second-order neurons are maintained under tonic GABAergic inhibition. Some of the neurons in the NST are excited by substance P and some are inhibited by met-enkephalin. Areas of the forebrain that receive gustatory input, including the insular cortex, LH, CeA, and BST, provide descending modulatory control over taste neurons in both the NST and PbN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, et al. 2000. A novel family of mammalian taste receptors. Cell 100: 693–702.

    Article  CAS  PubMed  Google Scholar 

  • Allen GV, Saper CB, Hurley JM, Cechetto DF. 1991. Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311: 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Avenet P, Lindemann B. 1987. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol 97: 223–240.

    Article  CAS  PubMed  Google Scholar 

  • Bachmanov AA, Li X, Li S, Neira M, Beauchamp GK, et al. 2001. High-resolution genetic mapping of the sucrose octaacetate taste aversion (SoA) locus on mouse Chromosome 6. Mamm Genome 12: 695–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmanov AA, Li X, Reed DR, Ohmen JD, Li S, et al. 2001. Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses 26: 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Barry MA, Haglund S, Savoy LD. 2001. Association of extracellular acetylcholinesterase with gustatory nerve terminal fibers in the nucleus of the solitary tract. Brain Res 921: 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Barry MA, Halsell CB, Whitehead MC. 1993. Organization of the nucleus of the solitary tract in the hamster: Acetylcholinesterase, NADH dehydrogenase and cytochrome oxidase histochemistry. Microsc Res Tech 26: 231–244.

    Article  CAS  PubMed  Google Scholar 

  • Behrens M, Brockhoff A, Kuhn C, Bufe B, Winnig M, et al. 2004. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem Biophys Res Commun 319: 479–485.

    Article  CAS  PubMed  Google Scholar 

  • Beidler LM, Smallman R. 1965. Renewal of cells within taste buds. J Cell Biol 27: 263–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belecky TL, Smith DV. 1990. Postnatal development of palatal and laryngeal taste buds in the hamster. J Comp Neurol 293: 646–654.

    Article  CAS  PubMed  Google Scholar 

  • Benos DJ, Stranton BA. 1999. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol 520: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boughter JD Jr, Gilbertson TA. 1999. From channels to behavior: An integrative model of NaCl taste. Neuron 22: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W. 2002. The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32: 397–401.

    Article  CAS  PubMed  Google Scholar 

  • Caicedo A, Kim K-N, Roper SD. 2002. Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544: 501–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caicedo A, Pereira E, Margolskee RF, Roper SD. 2003. Role of the G-protein subunit α-gustducin in taste cell responses to bitter stimuli. J Neurosci 23: 9947–9952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, et al. 2000. T2Rs function as bitter taste receptors. Cell 100: 703–711.

    Article  CAS  PubMed  Google Scholar 

  • Chang F-CT, Scott TR. 1984. Conditioned taste aversions modify neural responses in the rat nucleus tractus solitarius. J Neurosci 4: 1850–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun X-D, Herness MS. 1996. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells. J Neurophysiol 75: 820–831.

    Article  CAS  PubMed  Google Scholar 

  • Cho YK, Li C-S, Smith DV. 2002a. Gustatory projections from the nucleus of the solitary tract to the parabrachial nuclei in the hamster. Chem Senses 27: 81–90.

    Article  PubMed  Google Scholar 

  • Cho YK, Li C-S, Smith DV. 2002b. Taste responses of neurons of the hamster solitary nucleus are enhanced by lateral hypothalamic stimulation. J Neurophysiol 87: 1981–1992.

    Article  PubMed  Google Scholar 

  • Cho YK, Li C-S, Smith DV. 2003. Descending influences from the lateral hypothalamus and amygdala converge onto medullary taste neurons. Chem Senses 28: 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. 2001. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC. 2004. Morphological characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. J Comp Neurol 468: 311–321.

    Article  CAS  PubMed  Google Scholar 

  • Contreras RJ, Beckstead RM, Norgren R. 1982. The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: An autoradiographic study in the rat. J Auton Nerv Syst 6: 303–322.

    Article  CAS  PubMed  Google Scholar 

  • Cottler-Fox M, Arvidson K, Hammarlune E, Friberg U. 1987. Fixation and occurrence of dark and light cells in taste buds of fungiform papillae. Scand J Dental Res 95: 417–427.

    CAS  Google Scholar 

  • Cummings TA, Daniels C, Kinnamon SC. 1996. Sweet taste transduction in hamster: Sweeteners and cyclic nucleotides depolarize taste cells by reducing a K+ current. J Neurophysiol 75: 1256–1263.

    Article  CAS  PubMed  Google Scholar 

  • Davis BJ, Kream RM. 1993. Distribution of tachykinin- and opioid-expressing neurons in the hamster solitary nucleus: An immuno- and in situ hybridization histochemical study. Brain Res 616: 6–16.

    Article  CAS  PubMed  Google Scholar 

  • Davis BJ, Smith DV. 1997. Substance P modulates taste responses in the nucleus of the solitary tract of the hamster. Neuroreport 8: 1723–1727.

    Article  CAS  PubMed  Google Scholar 

  • Di Lorenzo PM, Monroe S. 1995. Corticofugal influence on taste responses in the nucleus of the solitary tract in the rat. J Neurophysiol 74: 258–272.

    Article  CAS  PubMed  Google Scholar 

  • Duncan HJ, Brining SK, Smith DV. 1990. Distribution of substance P-immunoreactive nerve terminals in gustatory regions of the hamster solitary nucleus. Chem Senses 15: 568.

    Article  Google Scholar 

  • Emmers R, Benjamin RM, Blomquist AJ. 1962. Thalamic localization of afferents from the tongue in albino rats. J Comp Neurol 118: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Farbman AI. 1980. Renewal of taste bud cells in rat circumvallate papillae. Cell Tiss Kinetics 13: 349–357.

    CAS  Google Scholar 

  • Finger TE. 2005. Cell types and lineages in taste buds. Chem Senses 30 (Suppl. 1): i54–i55.

    Article  PubMed  Google Scholar 

  • Fischer A, Gilad Y, man O, Paabo S. 2005. Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22: 432–436.

    Article  CAS  PubMed  Google Scholar 

  • Frank M. 1973. An analysis of hamster afferent taste nerve response functions. J Gen Physiol 61: 588–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank ME, Bieber SL, Smith DV. 1988. The organization of taste sensibilities in hamster chorda tympani nerve fibers. J Gen Physiol 91: 861–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank RA, Preshaw RL, Stutz RM, Valenstein ES. 1982. Lateral hypothalamic stimulation: Stimulus-bound eating and self-deprivation. Physiol Behav 29: 17–21.

    Article  CAS  PubMed  Google Scholar 

  • Fuzessery ZM, Hall JC. 1996. Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. J Neurophysiol 76: 1059–1073.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson TA, Roper SD, Kinnamon SC. 1993. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: Enhancement by vasopressin and cAMP. Neuron 10: 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson TA, Boughter JD Jr, Zhang H, Smith DV. 2001. Distribution of gustatory sensitivities in rat taste cells: Whole-cell responses to apical chemical stimulation. J Neurosci 21: 4931–4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giza BK, Scott TR. 1983. Blood glucose selectively affects taste-evoked activity in rat nucleus tractus solitarius. Physiol Behav 31: 643–650.

    CAS  PubMed  Google Scholar 

  • Giza BK, Scott TR. 1987. Intravenous insulin infusions in rats decrease gustatory-evoked responses to sugars. Am J Physiol 252: R994–R1002.

    CAS  PubMed  Google Scholar 

  • Giza BK, Deems RO, Vanderweele DA, Scott TR. 1993. Pancreatic glucagon suppresses gustatory responsiveness to glucose. Am J Physiol 265: R1231–R1237.

    CAS  PubMed  Google Scholar 

  • Grossman SP, Dacey D, Halaris AE, Collier T, Routtenberg A. 1978. Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Science 202: 537–539.

    Article  CAS  PubMed  Google Scholar 

  • Guth L. 1957. The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat. Anat Rec 128: 715–731.

    Article  CAS  PubMed  Google Scholar 

  • Halsell CB. 1992. Organization of parabrachial nucleus efferents to the thalamus and amygdala in the golden hamster. J Comp Neurol 317: 57–78.

    Article  CAS  PubMed  Google Scholar 

  • Halsell CB. 1998. Differential distribution of amygdaloid input across rostral solitary nucleus subdivisions in rat. Ann NY Acad Sci 855: 482–485.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RB, Norgren R. 1984. Central projections of gustatory nerves in the rat. J Comp Neurol 222: 560–577.

    Article  CAS  PubMed  Google Scholar 

  • Hanamori T, Smith DV. 1989. Gustatory innervation in the rabbit: Central distribution of sensory and motor components of the chorda tympani, glossopharyngeal and superior laryngeal nerves. J Comp Neurol 282: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • HanamoriT, Miller IJ Jr, Smith DV. 1988. Gustatory responsiveness of fibers in the hamster glossopharyngeal nerve. J Neurophysiol 60: 478–498.

    Article  CAS  PubMed  Google Scholar 

  • Herness MS. 1989. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells. Neuroscience 33: 411–419.

    Article  CAS  PubMed  Google Scholar 

  • Herness MS, Gilbertson TA. 1999. Cellular mechanisms of taste transduction. Ann Rev Physiol 61: 873–900.

    Article  CAS  Google Scholar 

  • HernessMS, ZhaoF-L, Lu S-G, Kaya N, Shen T. 2002. Expression and physiological actions of cholecystokinin in rat taste receptor cells. J Neurosci 22: 10018–10029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herness S, Chen Y. 1997. Serotonin inhibits calcium-activated K+ current in rat taste receptor cells. Neuroreport 8: 3257–3261.

    Article  CAS  PubMed  Google Scholar 

  • Herness S, Zhao FL, Kaya N, Lu SG, Shen T, et al. 2002. Adrenergic signaling between rat taste receptor cells. J Physiol 543: 601–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YJ, Maruyama Y, Lu KS, Pereira E, Plonsky I, et al. 2005. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci 25: 843–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya N, Shen T, Lu SG, Zhao FL, Herness S. 2004. A paracrine signaling role for serotonin in rat taste buds: Expression and localization of serotonin receptor subtypes. Am J Physiol 286: R649–R658.

    CAS  Google Scholar 

  • Khaisman EB. 1976. Particular features of the innervation of taste buds of the epiglottis in monkeys. Acta Anat 95: 101–115.

    Article  CAS  PubMed  Google Scholar 

  • KimM-R, Kusakabe Y, Miura H, Shindo Y, Ninomiya Y, et al. 2003. Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312: 500–506.

    Article  CAS  PubMed  Google Scholar 

  • Kim U, Wooding S, Ricci D, Jorde LB, Drayna D. 2005. Worldwide haplotype diversity and coding sequence variation at human bitter taste receptor loci. Hum Mutat 26: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, et al. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299: 1221–1225.

    Article  CAS  PubMed  Google Scholar 

  • King MS, Wang L, Bradley RM. 1993. Substance P excites neurons in the gustatory zone of the rat nucleus tractus solitarius. Brain Res 619: 120–130.

    Article  CAS  PubMed  Google Scholar 

  • Kinnamon JC. 1987. Organization and innervation of taste buds. Neurobiology of taste and smell. Finger TE, Silver WL, editors. New York: Wiley; pp. 277–297.

    Google Scholar 

  • Kinnamon JC, Taylor BJ, Delay RJ, Roper SD. 1985. Ultrastructure of mouse vallate taste buds. I. Taste cells and their associated synapses. J Comp Neurol 235: 48–60.

    Article  CAS  PubMed  Google Scholar 

  • Kinnamon S. 1988. Taste transduction: A diversity of mechanisms. Trends Neurosci 11: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Kinnamon SC, Roper SD. 1988. Membrane properties of isolated mudpuppy taste cells. J Gen Physiol 91: 351–371.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Kusakabe Y, Miura H, Ninomiya Y, Hino A. 2001. Molecular genetic indentification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun 283: 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Knapp L, Lawton A, Oakley B, Wong L, Zhang C. 1995. Keratins as markers of differentiated taste cells of the rat. Differentiation 58: 341–349.

    Article  CAS  PubMed  Google Scholar 

  • Kosar E, Grill HJ, Norgren R. 1986. Gustatory cortex in the rat. II. Thalamocortical projections. Brain Res 379: 342–352.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn C, Bufe B, Winnig M, Hofmann T, Frank O, et al. 2004. Bitter taste receptors for saccharin and acesulfame K. J Neurosci 24: 10260–10265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriazi HT, Carvell GE, Brumberg JC, Simons DJ. 1996. Quantitative effects of GABA and bicuculline methiodide on receptive-field properties of neurons in real and simulated whisker barrels. J Neurophysiol 75: 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Lawton DM, Furness DN, Lindemann B, Hackney CM. 2000. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci 12: 3163–3171.

    Article  CAS  PubMed  Google Scholar 

  • Lemon CH, Smith DV. 2005. Neural representation of bitter taste in the nucleus of the solitary tract. J Neurophysiol 94: 3719-3729.

    Google Scholar 

  • Li C-S, Smith DV. 1997. Glutamate receptor antagonists block gustatory afferent input to the nucleus of the solitary tract. J Neurophysiol 77: 1514–1525.

    Article  CAS  PubMed  Google Scholar 

  • Li C-S, Cho YK, Smith DV. 2002. Taste responses of neurons in the hamster solitary nucleus are modulated by the central nucleus of the amygdala. J Neurophysiol 88: 2979–2992.

    Article  PubMed  Google Scholar 

  • Li C-S, Cho YC, Smith DV. 2005. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol 93: 1183–1196.

    Article  PubMed  Google Scholar 

  • Li C-S, Davis BJ, Smith DV. 2003. Opioid modulation of taste responses in the nucleus of the solitary tract. Brain Res 965: 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Staszewski L, Xu H, Durick K, Zoller M, et al. 2002. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99: 4692–4696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Ogura T, Kinnamon SC. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 88: 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA. 2004. Taste receptor cells express pH-sensitive leak K+ channels. J Neurophysiol 92: 2909–2919.

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B. 1996. Taste reception. Physiol Rev 76: 719–766.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Behbehani MM, Smith DV. 1993. The influence of GABA on cells in the gustatory region of the hamster solitary nucleus. Chem Senses 18: 285–305.

    Article  CAS  Google Scholar 

  • Lu SG, Zhao FL, Herness S. 2003. Physiological phenotyping of cholecystokinin-responsive rat taste receptor cells. Neurosci Lett 351: 157–160.

    Article  CAS  PubMed  Google Scholar 

  • Lundy RF, Norgren R. 2004. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J Neurophysiol 91: 1143–1157.

    Article  PubMed  Google Scholar 

  • Lundy RF Jr, Norgren R. 2001. Pontine gustatory activity is altered by electrical stimulation in the central nucleus of the amygdala. J Neurophysiol 85: 770–783.

    Article  PubMed  Google Scholar 

  • Lush IE, Hornigold N, King P, Stoye JP. 1995. The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. Genet Res 66: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Lyall V, Heck GL, Vinnikova AK, Ghosh S, Phan TH, et al. 2004. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol 558: 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mark GP, Scott TR, Chang F-CT, Grill HJ. 1988. Taste responses in the nucleus tractus solitarius of the chronic decerebrate rat. Brain Res 443: 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo R, Shimizu N, Kusano K. 1984. Lateral hypothalamic modulation of oral sensory afferent activity in nucleus tractus solitarius neurons of rats. J Neurosci 4: 1201–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Max M, Shanker YG, Huang L, Rong M, Liu Z, et al. 2001. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 28: 58–63.

    CAS  PubMed  Google Scholar 

  • Medler KF, Margolskee RF, Kinnamon SC. 2003. Electrophysiological characterization of voltage-gated currents in defined taste cell types in mice. J Neurosci 23: 2608–2617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller IJ Jr, Smith DV. 1984. Quantitative taste bud distribution in the hamster. Physiol Behav 32: 275–285.

    Article  PubMed  Google Scholar 

  • Miller IJ Jr, Spangler KM. 1982. Taste bud distribution and innervation on the palate of the rat. Chem Senses 7: 99–108.

    Article  Google Scholar 

  • Miyoshi M, Abe K, Emori Y. 2001. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses 26: 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Montmayeur JP, Liberles SD, Matsunami H, Buck LB. 2001. A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4: 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, et al. 2005. The receptors and coding logic for bitter taste. Nature 434: 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Murray RG. 1971. Ultrastructure of taste receptors. Handbook of sensory physiology, Vol. IV. Chemical Senses. Part 2. Taste. Beidler LM, editor. Berlin: Springer-Verlag; pp. 31–50.

    Google Scholar 

  • Murray RG. 1986. The mammalian taste bud type III cell: a critical analysis. J Ultrastruct Molec Struct Res 95: 175–188.

    Article  CAS  Google Scholar 

  • Murzi E, Hernandez L, Baptista T. 1986. Lateral hypothalamic sites eliciting eating affect medullary taste neurons in rats. Physiol Behav 36: 829–834.

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, et al. 2002. An amino-acid taste receptor. Nature 416: 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, et al. 2001. Mammalian sweet taste receptors. Cell 106: 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Nelson GM, Finger TE. 1993. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J Comp Neurol 336: 507–516.

    Article  CAS  PubMed  Google Scholar 

  • Nelson TM, Munger SD, Boughter JD Jr, 2005. Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice. BMC Genet 6: 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishijo H, Uwano T, Tamura R, Ono T. 1998. Gustatory and multimodal neuronal responses in the amygdala during licking and discrimination of sensory stimuli in awake rats. J Neurophysiol 79: 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Norgren R. 1970. Gustatory responses in the hypothalamus. Brain Res 21: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Norgren R. 1974. Gustatory afferents to ventral forebrain. Brain Res 81: 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Norgren R. 1976. Taste pathways to hypothalamus and amygdala. J Comp Neurol 166: 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Norgren R. 1978. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218.

    Article  CAS  PubMed  Google Scholar 

  • Norgren R. 1985. Taste and the autonomic nervous system. Chem Senses 10: 143–161.

    Article  Google Scholar 

  • Norgren R, Leonard CM. 1973. Ascending central gustatory pathways. J Comp Neurol 150: 217–238.

    Article  CAS  PubMed  Google Scholar 

  • Nosrat CA, Blomlof J, El Shamy WM, Ernfors P, Olson L. 1997. Lingual deficits in BDNF and NT3 mutant mice leading to gustatory and somatosensory disturbances, respectively. Development 124: 1333–1342.

    Article  CAS  PubMed  Google Scholar 

  • Oakley B. 1974. On the specification of taste neurons in the rat tongue. Brain Res 75: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Oakley B. 1975. Receptive fields of cat taste fibers. Chem Senses Flav 1: 431–442.

    Article  CAS  Google Scholar 

  • Ogawa H, Hasegawa K, Otawa S, Ikeda I. 1998. GABAergic inhibition and modifications of taste responses in the cortical taste area in rats. Neurosci Res 32: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Otawa S, Takagi K, Ogawa H. 1995. NMDA and non-NMDA receptors mediate taste afferent inputs to cortical taste neurons in rats. Exp Brain Res 106: 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki M, Sato M. 1972. Responses of gustatory cells in the tongue of rat to stimuli representing four taste qualities. Comp Biochem Physiol A 41: 391–407.

    Article  CAS  PubMed  Google Scholar 

  • Perez CA, Margolskee RF, Kinnamon SC, Ogura T. 2003. Making sense with TRP channels: Store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Cell Calcium 33: 541–549.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffmann C. 1955. Gustatory nerve impulses in rat, cat and rabbit. J Neurophysiol 18: 429–440.

    Article  CAS  PubMed  Google Scholar 

  • Pfaffmann C. 1959. The afferent code for sensory quality. Am Psychol 14: 226–232.

    Article  Google Scholar 

  • Pfaffmann C. 1964. Taste, its sensory and motivating properties. Am Sci 52: 187–206.

    Google Scholar 

  • Pritchard T. 1991. The primate gustatory system. Smell and taste in health and disease. Getchell TV, Doty RL, Bartoshuk LM, Snow JB Jr, editors. New York: Raven; pp. 109–125.

    Google Scholar 

  • Pronin AN, Tang H, Connor J, Keung W. 2004. Identification of ligands for two human bitter T2R receptors. Chem Senses 29: 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Pumplin DW, Getschman E. 2000. Synaptic proteins in rat taste bud cells: Appearance in the Golgi apparatus and relationship to α-gustducin and the Lewisb and A antigens. J Comp Neurol 427: 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Pumplin DW, Yu C, Smith DV. 1997. Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J Comp Neurol 378: 389–410.

    Article  CAS  PubMed  Google Scholar 

  • Pumplin DW, Getschman E, Boughter JD Jr, Yu C, Smith DV. 1999. Differential expression of carbohydrate antigens on rat taste bud cells: Relation to the functional marker α-gustducin. J Comp Neurol 415: 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Reutter K, Witt M. 1993. Morphology of vertebrate taste organs and their nerve supply. Mechanisms of taste transduction. Simon SA, Roper SD, editors. Boca Raton, FL: CRC Press; pp. 29–82.

    Google Scholar 

  • Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD. 2004. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol 92: 1928–1936.

    Article  CAS  PubMed  Google Scholar 

  • Royer SM, Kinnamon JC. 1988. Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol 270: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Royer SM, Kinnamon JC. 1991. HVEM serial-section analysis of rabbit foliate taste buds: I. Type III cells and their synapses. J Comp Neurol 306: 49–72.

    Article  CAS  PubMed  Google Scholar 

  • Sainz E, Korley JN, Battey JF, Sullivan SL. 2001. Identification of a novel member of the T1R family of putative taste receptors. J Neurochem 77: 896–903.

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Loewy AD. 1980. Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Beidler LM. 1997. Broad tuning of rat taste cells to four basic taste stimuli. Chem Senses 22: 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T. 1996. Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494: 757–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott K. 2004. The sweet and the bitter of mammalian taste. Curr Opin Neurobiol 14: 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Kaya N, Zhao FL, Lu SG, Cao Y, et al. 2005. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha-gustducin and T1R2 in rat taste receptor cells. Neuroscience 130: 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Shigemura N, Miura H, Kusakabe Y, Hino A, Ninomiya Y. 2003. Expression of leptin receptor (Ob-R) isoforms and signal transducers and activators of transcription (STATs) mRNAs in the mouse taste buds. Arch Histol Cytol 66: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Li C-S. 1998. Tonic GABAergic inhibition of taste-responsive neurons in the nucleus of the solitary tract. Chem Senses 23: 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Li C-S. 2000. GABA-mediated corticofugal inhibition of taste-responsive neurons in the nucleus of the solitary tract. Brain Res 858: 408–415.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Scott TR. 2003. Gustatory neural coding. Handbook of olfaction and gustation, 2nd Edition. Doty RL, editor. New York: Marcel Dekker; pp. 731–758.

    Google Scholar 

  • Smith DV, Shepherd GM. 2003. Chemical senses: Taste and olfaction. Fundamental neuroscience. Squire LR, Bloom FE, McConnell S, Roberts J, Spitzer N, Zigmond MJ, editors. New York: Academic; pp. 631–667.

    Google Scholar 

  • Smith DV, Akeson RA, Shipley MT. 1993. NCAM expression by subsets of taste cells is dependent upon innervation. J Comp Neurol 336: 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Ye M-K, Li C-S. 2005. Medullary taste responses are modulated by the bed nucleus of the stria terminalis. Chem Senses 30: 421–434.

    Article  PubMed  Google Scholar 

  • Smith DV, Klevitsky R, Akeson R, Shipley MT. 1994. Taste bud expression of human blood group antigens. J Comp Neurol 343: 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Van Buskirk RL, Travers JB, Bieber SL. 1983. Gustatory neuron types in hamster brain stem. J Neurophysiol 50: 522–540.

    Article  CAS  PubMed  Google Scholar 

  • SmithDV, Som J, Boughter JD Jr, St. John SJ, Yu C, et al. 1999. Cellular expression of α-gustducin and the A blood group antigen in rat fungiform taste buds cross-reinnervated by the IXth nerve. J Comp Neurol 409: 118–130.

    Article  CAS  PubMed  Google Scholar 

  • Spector AC, Guagliardo NA, St. John SJ. 1996. Amiloride disrupts NaCl versus KCl discrimination performance: Implications for salt taste coding in rats. J Neurosci 16: 8115–8122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St. John SJ, Smith DV. 2000. Neural representation of salts in the rat solitary nucleus: Brainstem correlates of taste discrimination. J Neurophysiol 84: 628–638.

    Article  Google Scholar 

  • Suga N, Zhang YF, Yan J. 1997. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the moustached bat. J Neurophysiol 77: 2098–2114.

    Article  CAS  PubMed  Google Scholar 

  • Tokita K, Karadi Z, Shimura T, Yamamoto T. 2004. Centrifugal inputs modulate taste aversion learning associated parabrachial neuronal activities. J Neurophysiol 92: 265–279.

    Article  PubMed  Google Scholar 

  • Tonosaki K, Funakoshi M. 1984. Intracellular taste cell responses of mouse. Comp Biochem Physiol A 78: 651–656.

    Article  CAS  PubMed  Google Scholar 

  • Touzani K, Velley L. 1990. Ibotenic acid lesion of the lateral hypothalamus increases preference and aversion thresholds for saccharin and alters the morphine modulation of taste. Pharmacol Biochem Behav 36: 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Travers JB. 1988. Efferent projections from the anterior nucleus of the solitary tract of the hamster. Brain Res 455: 283–294.

    Article  Google Scholar 

  • Travers JB, Smith DV. 1979. Gustatory sensitivities in neurons of the hamster nucleus tractus solitarius. Sens Processes 3: 1–26.

    CAS  PubMed  Google Scholar 

  • Travers SP. 1993. Orosensory processing in neural systems of the nucleus of the solitary tract. Mechanisms of Taste Transduction. Simon SA, Roper SD, editors. Boca Raton FL: CRC Press; pp. 339–394.

    Google Scholar 

  • Travers SP, Norgren R. 1991. Coding the sweet taste in the nucleus of the solitary tract: Differential roles for anterior tongue and nasoincisor duct gustatory receptors in the rat. J Neurophysiol 65: 1372–1380.

    Article  CAS  PubMed  Google Scholar 

  • Travers SP, Pfaffmann C, Norgren R. 1986. Convergence of lingual and palatal gustatory neural activity in the nucleus of the solitary tract. Brain Res 365: 305–320.

    Article  CAS  PubMed  Google Scholar 

  • Van Buskirk RL, Smith DV. 1981. Taste sensitivity of hamster parabrachial pontine neurons. J Neurophysiol 45: 144–171.

    Article  CAS  PubMed  Google Scholar 

  • Kooy van der D, Koda LY, McGinty JF, Gerfen CR, Bloom FE. 1984. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224: 1–24.

    Article  PubMed  Google Scholar 

  • Uteshev VV, Smith DV. 2006. Cholinergic modulation of neurons in the gustatory region of the nucleus of the solitary tract. Brain Research 1084: 38-53.

    Google Scholar 

  • Vasudev R, Gentil CG, Covian MR. 1985. Effect of electrical and chemical stimulation of the lateral hypothalamus on taste preferences. Braz J Med Biol Res 18: 3–14.

    CAS  PubMed  Google Scholar 

  • Vogt MB, Mistretta CM. 1990. Convergence in mammalian nucleus of solitary tract during development and functional differentiation of salt taste circuits. J Neurosci 10: 3148–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Bradley RM. 1993. Influence of GABA on neurons of the gustatory zone of the rat nucleus of the solitary tract. Brain Res 616: 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Bradley RM. 1995. In vitro study of afferent synaptic transmission in the rostral gustatory zone of the rat nucleus of the solitary tract. Brain Res 702: 188–198.

    Article  CAS  PubMed  Google Scholar 

  • Whiteside B. 1927. Nerve overlap in the gustatory apparatus of the rat. J Comp Neurol 44: 363–377.

    Article  Google Scholar 

  • Xu H, Staszewski L, Tang H, Adler E, Zoller M, et al. 2004. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101: 14258–14263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Matsuo R, Kiyomitsu Y, Kitamura R. 1989. Response properties of lateral hypothalamic neurons during ingestive behavior with special reference to licking of various taste solutions. Brain Res 481: 286–297.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Shimura T, Saiko N, Yasoshima Y, Sakai N. 1994. Neural substrates for conditioned taste aversion in the rat. Behav Brain Res 65: 123–137.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsuo R, Ichikawa H, Wakisaka S, Akai M, et al. 1990. Aversive taste stimuli increase CGRP levels in the gustatory insular cortex of the rat. Neurosci Lett 112: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Stoick CL, Kinnamon JC. 2004. Synaptobrevin-2-like immunoreactivity is associated with vesicles at synapses in rat circumvallate taste buds. J Comp Neurol 471: 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Crowley HH, Rock ME, Kinnamon JC. 2000. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 424: 205–215.

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC. 2000. Ultrastructural localization of gustducin immunoreactivity in micovilli of type II taste cells in the rat. J Comp Neurol 425: 139–151.

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Heck GL, De Simone JA. 1991. The anion paradox in sodium taste reception: Resolution by voltage-clamp studies. Science 254: 724–726.

    Article  CAS  PubMed  Google Scholar 

  • Yee C, Jones KR, Finger TE. 2003. Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses. J Comp Neurol 459: 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Yee C, Yang R, Bottger B, Finger TE, Kinnamon JC. 2001. “Type III” cells of rat taste buds: Immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol 440: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Oakley B. 1996. The distribution and origin of keratin 20-containing taste buds in rat and human. Differentiation 61: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, et al. 2003. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signalling pathways. Cell 112: 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Zhao GQ, Shang Y, Hoon MA, Chandrashekar J, Erlenbach I, et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115: 255–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this entry

Cite this entry

Smith, D.V., Boughter, J.D. (2006). Neurochemistry of the Gustatory System. In: Lajtha, A., Johnson, D.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30374-1_5

Download citation

Publish with us

Policies and ethics