Skip to main content

The Role of Thrombin and Thrombin Receptors in the Brain

  • Chapter
  • First Online:
Book cover Thrombin

Abstract

The serine protease thrombin is generated from its zymogen prothrombin. Both thrombin and prothrombin have been detected locally in the brain. Emerging evidence demonstrates that thrombin exerts physiological and pathological functions in the central nervous system. During brain development, thrombin regulates cell proliferation, differentiation, and migration. Thrombin is also involved in synaptic organization and synaptic plasticity in normal brain. In the brain injured in neurodegenerative disorders, the activity of thrombin is modulated and thrombin mediates the dual opposite effects. Low concentrations of thrombin rescue neural cells from death after brain insults. In contrast, thrombin at high concentrations exacerbates brain damage. The cellular functions of thrombin are mainly regulated by G protein-coupled protease-activated receptors (PARs). Thrombin can signal to PAR1, PAR3, and PAR4. PAR1 has been shown to mediate extensively thrombin-induced neurodegeneration and neuroprotection in the brain. Therefore, thrombin and thrombin receptors represent novel therapeutic targets for treating neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Akiyama, H., Ikeda, K., Kondo, H. and McGeer, P. L. 1992. Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci. Lett. 146:152–154

    CAS  PubMed  Google Scholar 

  • Almonte, A. G., Hamill, C. E., Chhatwal, J. P., Wingo, T. S., Barber, J. A., Lyuboslavsky, P. N., David Sweatt, J., Ressler, K. J., White, D. A. and Traynelis, S. F. 2007. Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol. Learn Mem. 88:295–304

    CAS  PubMed  Google Scholar 

  • Anisowicz, A., Sotiropoulou, G., Stenman, G., Mok, S. C. and Sager, R. 1996. A novel protease homolog differentially expressed in breast and ovarian cancer. Mol. Med. 2:624–636

    CAS  PubMed  Google Scholar 

  • Arai, T., Guo, J. P. and McGeer, P. L. 2005. Proteolysis of non-phosphorylated and phosphorylated tau by thrombin. J. Biol. Chem. 280:5145–5153

    CAS  PubMed  Google Scholar 

  • Arai, T., Miklossy, J., Klegeris, A., Guo, J. P. and McGeer, P. L. 2006. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 65:19–25

    CAS  PubMed  Google Scholar 

  • Beilin, O., Karussis, D. M., Korczyn, A. D., Gurwitz, D., Aronovich, R., Hantai, D., Grigoriadis, N., Mizrachi-Kol, R. and Chapman, J. 2005. Increased thrombin inhibition in experimental autoimmune encephalomyelitis. J. Neurosci. Res. 79:351–359

    CAS  PubMed  Google Scholar 

  • Benveniste, E. N., Nguyen, V. T. and O’Keefe, M.G. 2001. Immunological aspects of microglia: Relevance to Alzheimer’s disease. Neurochem. Int. 39:381–391

    CAS  PubMed  Google Scholar 

  • Boven, L. A., Vergnolle, N., Henry, S. D., Silva, C., Imai, Y., Holden, J., Warren, K., Hollenberg, M. D. and Power, C. 2003. Up-regulation of proteinase-activated receptor 1 expression in astrocytes during HIV encephalitis. J. Immunol. 170:2638–2646

    CAS  PubMed  Google Scholar 

  • Brewer, G. J. 1996. Thrombin causes cell spreading and redistribution of beta-amyloid immunoreactivity in cultured hippocampal neurons. J. Neurochem. 67:119–130

    CAS  PubMed  Google Scholar 

  • Cannon, J. R., Keep, R. F., Hua, Y., Richardson, R. J., Schallert, T. and Xi, G. 2005. Thrombin preconditioning provides protection in a 6-hydroxydopamine Parkinson’s disease model. Neurosci. Lett. 373:189–194

    CAS  PubMed  Google Scholar 

  • Cannon, J. R., Keep, R. F., Schallert, T., Hua, Y., Richardson, R. J. and Xi, G. 2006. Protease-activated receptor-1 mediates protection elicited by thrombin preconditioning in a rat 6-hydroxydopamine model of Parkinson’s disease. Brain Res. 1116:177–186

    CAS  PubMed  Google Scholar 

  • Cannon, J. R., Hua, Y., Richardson, R. J., Xi, G., Keep, R. F. and Schallert, T. 2007. The effect of thrombin on a 6-hydroxydopamine model of Parkinson’s disease depends on timing. Behav. Brain Res. 183:161–168

    CAS  PubMed  Google Scholar 

  • Carreno-Muller,E.Herrera, A. J., de Pablos, R. M., Tomas-Camardiel, M., Venero, J. L., Cano, J. and Machado, A. 2003. Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. J. Neurochem. 84:1201–1214

    CAS  PubMed  Google Scholar 

  • Castano, A., Herrera, A. J., Cano, J. and Machado, A. 1998. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem. 70:1584–1592

    CAS  PubMed  Google Scholar 

  • Chapman, J. 2006. Thrombin in inflammatory brain diseases. Autoimmun. Rev. 5:528–531

    CAS  PubMed  Google Scholar 

  • Chen, Z. L., Yoshida, S., Kato, K., Momota, Y., Suzuki, J., Tanaka, T., Ito, J., Nishino, H., Aimoto, S., Kiyama, H. and et al. 1995. Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J. Neurosci. 15:5088–5097

    CAS  PubMed  Google Scholar 

  • Choi, B. H., Kim, R. C., Vaughan, P. J., Lau, A., Van Nostrand, W. E., Cotman, C. W. and Cunningham, D. D. 1995. Decreases in protease nexins in Alzheimer’s disease brain. Neurobiol. Aging 16:557–562

    CAS  PubMed  Google Scholar 

  • Choi, S. H., Joe, E. H., Kim, S. U. and Jin, B. K. 2003a. Thrombin-induced microglial activation produces degeneration of nigral dopaminergic neurons in vivo. J. Neurosci. 23:5877–5886

    CAS  Google Scholar 

  • Choi, S. H., Y., L. D., Ryu, J. K., Kim, J., Joe, E. H. and Jin, B. K. 2003b. Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins. Neurobiol. Dis. 14:181–193

    CAS  Google Scholar 

  • Choi, S. H., Lee, D. Y., Kim, S. U. and Jin, B. K. 2005. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: Role of microglial NADPH oxidase. J. Neurosci. 25:4082–4090

    CAS  PubMed  Google Scholar 

  • Chong, Y. H., Jung, J. M., Choi, W., Park, C. W., Choi, K. S. and Suh, Y. H. 1994. Bacterial expression, purification of full length and carboxyl terminal fragment of Alzheimer amyloid precursor protein and their proteolytic processing by thrombin. Life Sci. 54:1259–1268

    CAS  PubMed  Google Scholar 

  • Christov, A., Ottman, J. T. and Grammas, P. 2004. Vascular inflammatory, oxidative and protease-based processes: Implications for neuronal cell death in Alzheimer’s disease. Neurol. Res. 26:540–546

    CAS  PubMed  Google Scholar 

  • Collins, L. R., Ricketts, W. A., Olefsky, J. M. and Brown, J. H. 1997. The G12 coupled thrombin receptor stimulates mitogenesis through the Shc SH2 domain. Oncogene 15:595–600

    CAS  PubMed  Google Scholar 

  • Coughlin, S. 2000. Thrombin signalling and protease-activated receptors. Nature 407:258–264

    CAS  PubMed  Google Scholar 

  • Coughlin, S. R. and Camerer, E. 2003. PARticipation in inflammation. J. Clin. Invest. 111:25–27

    CAS  PubMed  Google Scholar 

  • Cunningham, D. D.Gurwitz, D. and 1989. Proteolytic regulation of neurite outgrowth from neuroblastoma cells by thrombin and protease nexin-1. J. Cell Biochem. 39:55–64

    CAS  PubMed  Google Scholar 

  • Daub, H., Weiss, F. U., Wallasch, C. and Ullrich, A. 1996. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560

    CAS  PubMed  Google Scholar 

  • Davie, E. W., Fujikawa, K. and Kisiel, W. 1991. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 30:10363–10370

    CAS  PubMed  Google Scholar 

  • Davis-Salinas, J., Saporito-Irwin, S. M., Donovan, F. M., Cunningham, D. D. and Van Nostrand, W. E. 1994. Thrombin receptor activation induces secretion and nonamyloidogenic processing of amyloid b-protein precursor. J. Biol. Chem. 269:22623–22627

    CAS  PubMed  Google Scholar 

  • Debeir, T., Gueugnon, J., Vige, X. and Benavides, J. 1996. Transduction mechanisms involved in thrombin receptor-induced nerve growth factor secretion and cell division in primary cultures of astrocytes. J. Neurochem. 66:2320–2328

    CAS  PubMed  Google Scholar 

  • Debeir, T., Benavides, J. and Vige, X. 1998. Involvement of protease-activated receptor-1 in the in vitro development of mesencephalic dopaminergic neurons. Neuroscience 82:739–752

    CAS  PubMed  Google Scholar 

  • Derkach, V. A., Oh, M. C., Guire, E. S. and Soderling, T. R. 2007. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat. Rev. Neurosci. 8:101–113

    CAS  PubMed  Google Scholar 

  • Deschepper, C. F., Bigornia, V., Berens, M. E. and Lapointe, M. C. 1991. Production of thrombin and antithrombin III by brain and astroglial cell cultures. Brain Res. Mol. Brain Res. 11:355–358

    CAS  PubMed  Google Scholar 

  • Dihanich, M., Kaser, M., Reinhard, E., Cunningham, D. and Monard, D. 1991. Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6:575–581

    CAS  PubMed  Google Scholar 

  • Donovan, F. M. and Cunningham, D. D. 1998. Signaling pathways involved in thrombin-induced cell protection. J. Biol. Chem. 273:12746–12752

    CAS  PubMed  Google Scholar 

  • Donovan, F. M., Pike, C. J., Cotman, C. W. and Cunningham, D. D. 1997. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J. Neurosci. 17:5316–5326

    CAS  PubMed  Google Scholar 

  • Fan, Y., Zhang, W. and Mulholland, M. 2005. Thrombin and PAR-1-AP increase proinflammatory cytokine expression in C6 cells. J. Surg. Res. 129:196–201

    CAS  PubMed  Google Scholar 

  • Fenton, J. W., 2nd1986. Thrombin. Ann. N Y Acad. Sci. 485:5–15

    PubMed  Google Scholar 

  • Fiorucci, S. and Distrutti, E. 2003. Proteinase-activated receptors (PARs) and immune function. Drug Dev. Res. 60:65–70

    CAS  Google Scholar 

  • Fujimoto, S., Katsuki, H., Kume, T. and Akaike, A. 2006. Thrombin-induced delayed injury involves multiple and distinct signaling pathways in the cerebral cortex and the striatum in organotypic slice cultures. Neurobiol. Dis. 22:130–142

    CAS  PubMed  Google Scholar 

  • Fujimoto, S., Katsuki, H., Ohnishi, M., Takagi, M., Kume, T. and Akaike, A. 2007. Thrombin induces striatal neurotoxicity depending on mitogen-activated protein kinase pathways in vivo. Neuroscience 144:694–701

    CAS  PubMed  Google Scholar 

  • Gingrich, M. B., Junge, C. E., Lyuboslavsky, P. and Traynelis, S. F. 2000. Potentiation of NMDA receptor function by the serine protease thrombin. J. Neurosci. 20:4582–4595

    CAS  PubMed  Google Scholar 

  • Gorbacheva, L. R., Storozhevykh, T. P., Pinelis, V. G., Ishiwata, S. and Strukova, S. M. 2006. Modulation of hippocampal neuron survival by thrombin and factor Xa. Biochemistry (Mosc) 71:1082–1089

    CAS  Google Scholar 

  • Grabham, P. and Cunningham, D. D. 1995. Thrombin receptor activation stimulates astrocyte proliferation and reversal of stellation by distinct pathways: Involvement of tyrosine phosphorylation. J. Neurochem. 64:583–591

    CAS  PubMed  Google Scholar 

  • Grabham, P. W., Monard, D., Gallimore, P. H. and Grand, R. J. 1991. Modulation of human neurite outgrowth by serine proteases: A comparison of the interaction of thrombin and prothrombin with glia-derived nexin. Eur. J. Neurosci. 3:663–668

    PubMed  Google Scholar 

  • Grammas, P., Ottman, T., Reimann-Philipp, U., Larabee, J. and Weigel, P. H. 2004. Injured brain endothelial cells release neurotoxic thrombin. J. Alzheimers Dis. 6:275–281

    CAS  PubMed  Google Scholar 

  • Grammas, P., Samany, P. G. and Thirumangalakudi, L. 2006. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: Implications for disease pathogenesis. J. Alzheimers Dis. 9:51–58

    CAS  PubMed  Google Scholar 

  • Grand, R. J., Grabham, P. W., Gallimore, M. J. and Gallimore, P. H. 1989. Modulation of morphological differentiation of human neuroepithelial cells by serine proteases: Independence from blood coagulation. EMBO J. 8:2209–2215

    Google Scholar 

  • Grand, R. J., Turnell, A. S. and Grabham, P. W. 1996. Cellular consequences of thrombin-receptor activation. Biochem. J. 313:353–368

    Google Scholar 

  • Granziera, C., Thevenet, J., Price, M., Wiegler, K., Magistretti, P. J., Badaut, J. and Hirt, L. 2007. Thrombin-induced ischemic tolerance is prevented by inhibiting c-jun N-terminal kinase. Brain Res. 1148:217–225

    CAS  PubMed  Google Scholar 

  • Grishina, Z., Ostrowska, E., Halangk, W., Sahin-Toth, M. and Reiser, G. 2005. Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): Mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1. Br. J. Pharmacol. 146:990–999

    CAS  PubMed  Google Scholar 

  • Gschwend, T. P., Krueger, S. R., Kozlov, S. V., Wolfer, D. P. and Sonderegger, P. 1997. Neurotrypsin, a novel multidomain serine protease expressed in the nervous system. Mol. Cell Neurosci. 9:207–219

    CAS  PubMed  Google Scholar 

  • Hanisch, U. K., van Rossum, D., Xie, Y., Gast, K., Misselwitz, R., Auriola, S., Goldsteins, G., Koistinaho, J., Kettenmann, H. and Moller, T. 2004. The microglia-activating potential of thrombin: The protease is not involved in the induction of proinflammatory cytokines and chemokines. J. Biol. Chem. 279:51880–51887

    CAS  PubMed  Google Scholar 

  • Heneka, M. T. and O’Banion, M. K. 2007. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 184:69–91

    CAS  PubMed  Google Scholar 

  • Henrich-Noack, P., Riek-Burchardt, M., Baldauf, K., Reiser, G. and Reymann, K. G. 2006a. Focal ischemia induces expression of protease-activated receptor1 (PAR1) and PAR3 on microglia and enhances PAR4 labeling in the penumbra. Brain Res. 1070:232–241

    CAS  Google Scholar 

  • Henrich-Noack, P., Striggow, F., Reiser, G. and Reymann, K. G. 2006b. Preconditioning with thrombin can be protective or worsen damage after endothelin-1-induced focal ischemia in rats. J. Neurosci. Res. 83:469–475

    CAS  Google Scholar 

  • Hernandez, M., Bayon, Y., Sanchez Crespo, M. and Nieto, M. L. 1997. Thrombin produces phosphorylation of cytosolic phospholipase A2 by a mitogen-activated protein kinase kinase-independent mechanism in the human astrocytoma cell line 1321N1. Biochem. J. 328:263–269

    CAS  PubMed  Google Scholar 

  • Hua, Y., Xi, G., Keep, R. F., Wu, J., Jiang, Y. and Hoff, J. T. 2002. Plasminogen activator inhibitor-1 induction after experimental intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 22:55–61

    CAS  PubMed  Google Scholar 

  • Hua, Y., Keep, R. F., Hoff, J. T. and Xi, G. 2003a. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron. J. Cereb. Blood Flow Metab. 23:1448–1454

    CAS  Google Scholar 

  • Hua, Y., Wu, J., Keep, R. F., Hoff, J. T. and Xi, G. 2003b. Thrombin exacerbates brain edema in focal cerebral ischemia. Acta Neurochir. Suppl. 86:163–166

    CAS  Google Scholar 

  • Hua, Y., Wu, J., Keep, R. F., Nakamura, T., Hoff, J. T. and Xi, G. 2006. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery 58:542–550

    PubMed  Google Scholar 

  • Hua, Y., Keep, R. F., Hoff, J. T. and Xi, G. 2007. Brain injury after intracerebral hemorrhage: The role of thrombin and iron. Stroke 38:759–762

    CAS  PubMed  Google Scholar 

  • Huang, F. P., Xi, G., Keep, R. F., Hua, Y., Nemoianu, A. and Hoff, J. T. 2002. Brain edema after experimental intracerebral hemorrhage: Role of hemoglobin degradation products. J. Neurosurg. 96:287–293

    PubMed  Google Scholar 

  • Igarashi, K., Murai, H. and Asaka, J. 1992. Proteolytic processing of amyloid beta protein precursor (APP) by thrombin. Biochem. Biophys. Res. Commun. 185:1000–1004

    CAS  PubMed  Google Scholar 

  • Inaba, Y., Ichikawa, M., Inoue, A., Itoh, M., Kyogashima, M., Sekiguchi, Y., Nakamura, S., Komiyama, A. and Koh, C. 2001. Plasma thrombin–antithrombin III complex is associated with the severity of experimental autoimmune encephalomyelitis. J. Neurol. Sci. 185:89–93

    CAS  PubMed  Google Scholar 

  • Ishida, Y., Nagai, A., Kobayashi, S. and Kim, S. U. 2006. Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: Astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. J. Neuropathol. Exp. Neurol. 65:66–77

    CAS  PubMed  Google Scholar 

  • Ishihara, H., Connolly, A. J., Zeng, D., Kahn, M. L., Zheng, Y. W., Timmons, C., Tram, T. and Coughlin, S. R. 1997. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386:502–506

    CAS  PubMed  Google Scholar 

  • Jalink, K., van-Corven, E. J., Hengeveld, T., Morii, N., Narumiya, S. and Moolenaar, W. H. 1994. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126:801–810

    CAS  PubMed  Google Scholar 

  • Jenner, P. 2003. Oxidative stress in Parkinson’s disease. Ann. Neurol. 53(Suppl 3):S26–S36

    CAS  PubMed  Google Scholar 

  • Jiang, Y., Wu, J., Hua, Y., Keep, R. F., Xiang, J., Hoff, J. T. and Xi, G. 2002. Thrombin-receptor activation and thrombin-induced brain tolerance. J. Cereb. Blood Flow Metab. 22:404–410

    CAS  PubMed  Google Scholar 

  • Juhler, M., Barry, D. I., Offner, H., Konat, G., Klinken, L. and Paulson, O. B. 1984. Blood–brain and blood–spinal cord barrier permeability during the course of experimental allergic encephalomyelitis in the rat. Brain Res. 302:347–355

    CAS  PubMed  Google Scholar 

  • Junge, C. E., Sugawara, T., Mannaioni, G., Alagarsamy, S., Conn, P. J., Brat, D. J., Chan, P. H. and Traynelis, S. F. 2003. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia. Proc. Natl Acad. Sci. USA 100:13019–13024

    CAS  PubMed  Google Scholar 

  • Kalaria, R. N., Golde, T., Kroon, S. N. and Perry, G. 1993. Serine protease inhibitor antithrombin III and its messenger RNA in the pathogenesis of Alzheimer’s disease. Am. J. Pathol. 143:886–893

    CAS  PubMed  Google Scholar 

  • Kalmes, A., Vesti, B. R., Daum, G., Abraham, J. A. and Clowes, A. W. 2000. Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ. Res. 87:92–98

    CAS  PubMed  Google Scholar 

  • Katsuki, H., Okawara, M., Shibata, H., Kume, T. and Akaike, A. 2006. Nitric oxide-producing microglia mediate thrombin-induced degeneration of dopaminergic neurons in rat midbrain slice culture. J. Neurochem. 97:1232–1242

    CAS  PubMed  Google Scholar 

  • Kim, K. Y., Kim, M. Y., Choi, H. S., Jin, B. K., Kim, S. U. and Lee, Y. B. 2002. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-alpha release. Neuroreport 13:849–852

    CAS  PubMed  Google Scholar 

  • Kitaoka, T., Hua, Y., Xi, G., Hoff, J. T. and Keep, R. F. 2002. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke 33:3012–3018

    CAS  PubMed  Google Scholar 

  • Knecht, W., Amadesi, S., Mohlin, J., Skaregarde, A., Geddal, K., Peterson, A., Chapman, K., Hollenberg, M., Vergnolle, N., Cottrell, G. S. and Bunnett, N. W. 2007. Trypsin IV or mesotrypsin and p23 cleave protease-activated receptors 1 and 2 to induce inflammation and hyperalgesia. J. Biol. Chem. 282:26089–26100

    CAS  PubMed  Google Scholar 

  • Kwak, S. and Weiss, J. H. 2006. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr. Opin. Neurobiol. 16:281–287

    CAS  PubMed  Google Scholar 

  • Lanuza, M. A., Garcia, N., Santafe, M., Nelson, P. G., Fenoll-Brunet, M. R. and Tomas, J. 2001. Pertussis toxin-sensitive G-protein and protein kinase C activity are involved in normal synapse elimination in the neonatal rat muscle. J. Neurosci. Res. 63:330–340

    CAS  PubMed  Google Scholar 

  • Lanuza, M. A., Garcia, N., Gonzalez, C. M., Santafe, M. M., Nelson, P. G. and Tomas, J. 2003. Role and expression of thrombin receptor PAR-1 in muscle cells and neuromuscular junctions during the synapse elimination period in the neonatal rat. J. Neurosci. Res. 73:10–21

    CAS  PubMed  Google Scholar 

  • Laskowski, A., Reiser, G. and Reymann, K. G. 2007. Protease-activated receptor-1 induces generation of new microglia in the dentate gyrus of traumatised hippocampal slice cultures. Neurosci. Lett. 415:17–21

    CAS  PubMed  Google Scholar 

  • Lee, K. R., Betz, A. L., Kim, S., Keep, R. F. and Hoff, J. T. 1996. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage. Acta Neurochir. (Wien) 138:396–400

    CAS  Google Scholar 

  • Lee, D. Y., Oh, Y. J. and Jin, B. K. 2005. Thrombin-activated microglia contribute to death of dopaminergic neurons in rat mesencephalic cultures: Dual roles of mitogen-activated protein kinase signaling pathways. Glia 51:98–110

    PubMed  Google Scholar 

  • Lee, D. Y., Park, K. W. and Jin, B. K. 2006. Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: Proteolytic and non-proteolytic actions. Biochem. Biophys. Res. Commun. 346:727–738

    CAS  Google Scholar 

  • Lee, C. J., Mannaioni, G., Yuan, H., Woo, D. H., Gingrich, M. B. and Traynelis, S. F. 2007. Astrocytic control of synaptic NMDA receptors. J. Physiol. 581:1057–1081

    CAS  PubMed  Google Scholar 

  • Ling, H., Xiao, P., Usami, O. and Hattori, T. 2004. Thrombin activates envelope glycoproteins of HIV type 1 and enhances fusion. Microbes Infect. 6:414–420

    CAS  PubMed  Google Scholar 

  • Liu, S. J. and Zukin, R. S. 2007. Ca2+.-permeable AMPA receptors in synaptic plasticity and neuronal death Trends Neurosci. 30:126–134

    CAS  PubMed  Google Scholar 

  • Liu, Y., Fields, R. D., Festoff, B. W. and Nelson, P. G. 1994. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction. Proc. Natl Acad. Sci. USA 91:10300–10304

    CAS  PubMed  Google Scholar 

  • Luo, W., Wang, Y. and Reiser, G. 2005. Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res. 1047:159–167

    CAS  PubMed  Google Scholar 

  • Luo, W., Wang, Y. and Reiser, G. 2007. Protease-activated receptors in the brain: Receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res. Rev. 56:331–345

    CAS  PubMed  Google Scholar 

  • Madani, R., Hulo, S., Toni, N., Madani, H., Steimer, T., Muller, D. and Vassalli, J. D. 1999. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18:3007–3012

    CAS  PubMed  Google Scholar 

  • Mahajan, V. B., Pai, K. S., Lau, A. and Cunningham, D. D. 2000. Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc. Natl Acad. Sci. USA 97:12062–12067

    CAS  PubMed  Google Scholar 

  • Majumdar, M., Seasholtz, T. M., Buckmaster, C., Toksoz, D. and Brown, J. H. 1999. A rho exchange factor mediates thrombin and Ga12.-induced cytoskeletal responses J. Biol. Chem. 274:26815–26821

    CAS  PubMed  Google Scholar 

  • Masada, T., Xi, G., Hua, Y. and Keep, R. F. 2000. The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Res. 867:173–179

    CAS  PubMed  Google Scholar 

  • Masada, T., Hua, Y., Xi, G., Yang, G. Y., Hoff, J. T., Keep, R. F. and Nagao, S. 2003. Overexpression of interleukin-1 receptor antagonist reduces brain edema induced by intracerebral hemorrhage and thrombin. Acta Neurochir. Suppl. 86:463–467

    CAS  PubMed  Google Scholar 

  • McLaughlin, J. N., Patterson, M. M. and Malik, A. B. 2007. Protease-activated receptor-3 (PAR3) regulates PAR1 signaling by receptor dimerization. Proc. Natl Acad. Sci. USA 104:5662–5667

    CAS  PubMed  Google Scholar 

  • Meli, R., Raso, G. M., Cicala, C., Esposito, E., Fiorino, F. and Cirino, G. 2001. Thrombin and PAR-1 activating peptide increase iNOS expression in cytokine-stimulated C6 glioma cells. J. Neurochem. 79:556–563

    CAS  PubMed  Google Scholar 

  • Mhatre, M., Nguyen, A., Kashani, S., Pham, T., Adesina, A. and Grammas, P. 2004. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol. Aging 25:783–793

    CAS  PubMed  Google Scholar 

  • Mhatre, M., Hensley, K., Nguyen, A. and Grammas, P. 2006. Chronic thrombin exposure results in an increase in apolipoprotein-E levels. J. Neurosci. Res. 84:444–449

    CAS  PubMed  Google Scholar 

  • Nakamura, T., Xi, G., Park, J. W., Hua, Y., Hoff, J. T. and Keep, R. F. 2005. Holo-transferrin and thrombin can interact to cause brain damage. Stroke 36:348–352

    CAS  PubMed  Google Scholar 

  • Nakanishi-Matsui, M., Zheng, Y. W., Sulciner, D. J., Weiss, E. J., Ludeman, M. J. and Coughlin, S. R. 2000. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613

    CAS  PubMed  Google Scholar 

  • Niclou, S. P., Suidan, H. S., Pavlik, A., Vejsada, R. and Monard, D. 1998. Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion. Eur. J. Neurosci. 10:1590–1607

    CAS  PubMed  Google Scholar 

  • Nicole, O., Goldshmidt, A., Hamill, C. E., Sorensen, S. D., Sastre, A., Lyuboslavsky, P., Hepler, J. R., McKeon, R. J. and Traynelis, S. F. 2005. Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J. Neurosci. 25:4319–4329

    CAS  PubMed  Google Scholar 

  • Noorbakhsh, F., Vergnolle, N., Hollenberg, M. D. and Power, C. 2003. Proteinase-activated receptors in the nervous system. Nat. Rev. Neurosci. 4:981–990

    CAS  PubMed  Google Scholar 

  • Noorbakhsh, F., Vergnolle, N., McArthur, J. C., Silva, C., Vodjgani, M., Andrade-Gordon, P., Hollenberg, M. D. and Power, C. 2005. Proteinase-activated receptor-2 induction by neuroinflammation prevents neuronal death during HIV infection. J. Immunol. 174:7320–7329

    CAS  PubMed  Google Scholar 

  • Noorbakhsh, F., Tsutsui, S., Vergnolle, N., Boven, L. A., Shariat, N., Vodjgani, M., Warren, K. G., Andrade-Gordon, P., Hollenberg, M. D. and Power, C. 2006. Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 203:425–435

    PubMed  Google Scholar 

  • Nystedt, S., Emilsson, K., Wahlestedt, C. and Sundelin, J. 1994. Molecular cloning of a potential proteinase activated receptor. Proc. Natl Acad. Sci. USA 91:9208–9212

    CAS  PubMed  Google Scholar 

  • Ohnishi, M., Katsuki, H., Fujimoto, S., Takagi, M., Kume, T. and Akaike, A. 2007. Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp. Neurol. 206:43–52

    CAS  PubMed  Google Scholar 

  • Ohtani, R., Tomimoto, H., Kondo, T., Wakita, H., Akiguchi, I., Shibasaki, H. and Okazaki, T. 2004. Upregulation of ceramide and its regulating mechanism in a rat model of chronic cerebral ischemia. Brain Res. 1023:31–40

    CAS  PubMed  Google Scholar 

  • Ohyama, H., Hosomi, N., Takahashi, T., Mizushige, K. and Kohno, M. 2001. Thrombin inhibition attenuates neurodegeneration and cerebral edema formation following transient forebrain ischemia. Brain Res. 902:264–271

    CAS  PubMed  Google Scholar 

  • Olanow, C. W. and Tatton, W. G. 1999. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 22:123–144

    CAS  PubMed  Google Scholar 

  • Olianas, M. C., Dedoni, S. and Onali, P. 2007. Proteinase-activated receptors 1 and 2 in rat olfactory system: Layer-specific regulation of multiple signaling pathways in the main olfactory bulb and induction of neurite retraction in olfactory sensory neurons. Neuroscience 146:1289–1301

    CAS  PubMed  Google Scholar 

  • Olson, E. E., Lyuboslavsky, P., Traynelis, S. F. and McKeon, R. J. 2004. PAR-1 deficiency protects against neuronal damage and neurologic deficits after unilateral cerebral hypoxia/ischemia. J. Cereb. Blood Flow Metab. 24:964–971

    CAS  PubMed  Google Scholar 

  • Pai, K. S., Mahajan, V. B., Lau, A. and Cunningham, D. D. 2001. Thrombin receptor signaling to cytoskeleton requires Hsp90. J. Biol. Chem. 276:32642–32647

    CAS  PubMed  Google Scholar 

  • Paterson, P. Y., Koh, C. S. and Kwaan, H. C. 1987. Role of the clotting system in the pathogenesis of neuroimmunologic disease. Fed. Proc. 46:91–96

    CAS  PubMed  Google Scholar 

  • Pike, C. J., Vaughan, P. J., Cunningham, D. D. and Cotman, C. W. 1996. Thrombin attenuates neuronal cell death and modulates astrocyte reactivity induced by b-amyloid in vitro. J. Neurochem. 66:1374–1382

    CAS  PubMed  Google Scholar 

  • Pompili, E., Nori, S. L., Geloso, M. C., Guadagni, E., Corvino, V., Michetti, F. and Fumagalli, L. 2004. Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Brain Res. Mol. Brain Res. 122:93–98

    CAS  PubMed  Google Scholar 

  • Putcha, G. V., Moulder, K. L., Golden, J. P., Bouillet, P., Adams, J. A., Strasser, A. and Johnson, E. M. 2001. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron 29:615–628

    CAS  PubMed  Google Scholar 

  • Qureshi, N. 1996. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 334:1406

    CAS  PubMed  Google Scholar 

  • Ramos-Mandujano, G., Vazquez-Juarez, E., Hernandez-Benitez, R. and Pasantes-Morales, H. 2007. Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 55:917–925

    PubMed  Google Scholar 

  • Rao, H. V., Thirumangalakudi, L., Desmond, P. and Grammas, P. 2007. Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J. Neurochem. 101:498–505

    CAS  PubMed  Google Scholar 

  • Rashidian, J., Iyirhiaro, G., Aleyasin, H., Rios, M., Vincent, I., Callaghan, S., Bland, R. J., Slack, R. S., During, M. J. and Park, D. S. 2005. Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc. Natl Acad. Sci. USA 102:14080–14085

    CAS  PubMed  Google Scholar 

  • Riek-Burchardt, M., Striggow, F., Henrich-Noack, P., Reiser, G. and Reymann, K. G. 2002. Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1 and protease-activated receptors. Neurosci. Lett. 329:181–184

    CAS  PubMed  Google Scholar 

  • Roberson, E. D. and Mucke, L. 2006. 100 years and counting: Prospects for defeating Alzheimer’s disease. Science 314:781–784

    PubMed  Google Scholar 

  • Rohatgi, T., Henrich-Noack, P., Sedehizade, F., Goertler, M., Wallesch, C. W., Reymann, K. G. and Reiser, G. 2004. Transient focal ischemia in rat brain differentially regulates mRNA expression of protease-activated receptors 1 to 4. J. Neurosci. Res. 75:273–279

    CAS  PubMed  Google Scholar 

  • Ryu, J., Pyo, H., Jou, I. and Joe, E. 2000. Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J. Biol. Chem. 275:29955–29959

    CAS  PubMed  Google Scholar 

  • Sailor, K. A., Ming, G. L. and Song, H. 2006. Neurogenesis as a potential therapeutic strategy for neurodegenerative diseases. Exp. Opin. Biol. Ther. 6:879–890

    CAS  Google Scholar 

  • Sawada, K., Nishibori, M., Nakaya, N., Wang, Z. and Saeki, K. 2000. Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J. Neurochem. 74:1731–1738

    CAS  PubMed  Google Scholar 

  • Shikamoto, Y. and Morita, T. 1999. Expression of factor X in both the rat brain and cells of the central nervous system. FEBS Lett. 463:387–389

    CAS  PubMed  Google Scholar 

  • Smadja, D. M., Laurendeau, I., Avignon, C., Vidaud, M., Aiach, M. and Gaussem, P. 2006. The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells. J. Thromb. Haemost. 4:2051–2058

    CAS  PubMed  Google Scholar 

  • Smith-Swintosky, V. L., Zimmer, S., Fenton, J. W., and 2ndMattson, M. P. 1995. Opposing actions of thrombin and protease nexin-1 on amyloid beta-peptide toxicity and on accumulation of peroxides and calcium in hippocampal neurons. J. Neurochem. 65:1415–1418

    CAS  PubMed  Google Scholar 

  • Striggow, F., Riek, M., Breder, J., Henrich-Noack, P., Reymann, K. G. and Reiser, G. 2000. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Natl Acad. Sci. USA 97:2264–2269

    CAS  PubMed  Google Scholar 

  • Striggow, F., Riek-Burchardt, M., Kiesel, A., Schmidt, W., Henrich-Noack, P., Breder, J., Krug, M., Reymann, K. G. and Reiser, G. 2001. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur. J. Neurosci. 14:595–608

    CAS  PubMed  Google Scholar 

  • Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L. M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunders, A. M., Goldgaber, D. and Roses, A. D. 1993. Binding of human apolipoprotein E to synthetic amyloid beta peptide: Isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90:8098–8102

    CAS  PubMed  Google Scholar 

  • Strokin, M., Sergeeva, M. and Reiser, G. 2003. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2. and is differently regulated by cyclic AMP and Ca2+ Br. J. Pharmacol. 139:1014–1022

    CAS  PubMed  Google Scholar 

  • Suidan, H. S., Nobes, C. D., Hall, A. and Monard, D. 1997. Astrocyte spreading in response to thrombin and lysophosphatidic acid is dependent on the Rho GTPase. Glia 21:244–252

    CAS  PubMed  Google Scholar 

  • Suo, Z., Wu, M., Ameenuddin, S., Anderson, H. E., Zoloty, J. E., Citron, B. A., Andrade-Gordon, P. and Festoff, B. W. 2002a. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J. Neurochem. 80:655–666

    CAS  Google Scholar 

  • Suo, Z., Wu, M., Citron, B. A. and Festoff, B. W. 2002b. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. Society for Neuroscience. Washington, DC: Online. Abstract Viewer/Itinerary Planner:Program No. 190,191

    Google Scholar 

  • Suo, Z., Wu, M., Citron, B. A., Palazzo, R. E., Festoff, B. W. and Gao, C. 2003. Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J. Biol. Chem. 278:37681–37689

    CAS  PubMed  Google Scholar 

  • Svedin, P., Hagberg, H., Savman, K., Zhu, C. and Mallard, C. 2007. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J. Neurosci. 27:1511–1518

    CAS  PubMed  Google Scholar 

  • Tarzami, S. T., Wang, G., Li, W., Green, L. and Singh, J. P. 2006. Thrombin and PAR-1 stimulate differentiation of bone marrow-derived endothelial progenitor cells. J. Thromb. Haemost. 4:656–663

    CAS  PubMed  Google Scholar 

  • Taupin, P. 2006. Neural progenitor and stem cells in the adult central nervous system. Ann. Acad. Med. Singapore 35:814–820

    PubMed  Google Scholar 

  • Thirumangalakudi, L., Samany, P. G., Owoso, A., Wiskar, B. and Grammas, P. 2006. Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. J. Alzheimers Dis. 10:111–118

    CAS  PubMed  Google Scholar 

  • Tomimatsu, Y., Idemoto, S., Moriguchi, S., Watanabe, S. and Nakanishi, H. 2002. Proteases involved in long-term potentiation. Life Sci. 72:355–361

    CAS  PubMed  Google Scholar 

  • Trendelenburg, G. and Dirnagl, U. 2005. Neuroprotective role of astrocytes in cerebral ischemia: Focus on ischemic preconditioning. Glia 50:307–320

    PubMed  Google Scholar 

  • Ubl, J. J., Vöhringer, C. and Reiser, G. 1998. Co-existence of two types of [Ca2+.]i-inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells Neuroscience 86:597–609

    CAS  PubMed  Google Scholar 

  • Vaughan, P. J., Su, J., Cotman, C. W. and Cunningham, D. D. 1994. Protease nexin-1, a potent thrombin inhibitor, is reduced around cerebral blood vessels in Alzheimer’s disease. Brain Res. 668:160–170

    CAS  PubMed  Google Scholar 

  • Vaughan, P. J., Pike, C. J., Cotman, C. W. and Cunningham, D. D. 1995. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J. Neurosci. 15:5389–5401

    CAS  PubMed  Google Scholar 

  • Vu, T. K., Hung, D. T., Wheaton, V. I. and Coughlin, S. R. 1991. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    CAS  PubMed  Google Scholar 

  • Wagner, S. L., Geddes, J. W., Cotman, C. W., Lau, A. L., Gurwitz, D., Isackson, P. J. and Cunningham, D. D. 1989. Protease nexin-1, an antithrombin with neurite outgrowth activity, is reduced in Alzheimer disease. Proc. Natl Acad. Sci. USA 86:8284–8288

    CAS  PubMed  Google Scholar 

  • Wang, H. and Reiser, G. 2003. The role of the Ca2+.-sensitive tyrosine kinase Pyk2 and Src in thrombin signalling in rat astrocytes J. Neurochem. 84:1349–1357

    CAS  PubMed  Google Scholar 

  • Wang, H., Ubl, J. J. and Reiser, G. 2002a. Four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37:53–63

    CAS  Google Scholar 

  • Wang, H., Ubl, J. J., Stricker, R. and Reiser, G. 2002b. Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell Physiol. 283:C1351–C1364

    CAS  Google Scholar 

  • Wang, Y., Richter-Landsberg, C. and Reiser, G. 2004. Expression of protease-activated receptors (PARs) in OLN-93 oligodendroglial cells and mechanism of PAR-1-induced calcium signaling. Neuroscience 126:69–82

    CAS  PubMed  Google Scholar 

  • Wang, Y., Luo, W., Stricker, R. and Reiser, G. 2006a. Protease-activated receptor-1 protects rat astrocytes from apoptotic cell death via JNK-mediated release of the chemokine GRO/CINC-1. J. Neurochem. 98:1046–1060

    CAS  Google Scholar 

  • Wang, Y., Luo, W., Wartmann, T., Halangk, W., Sahin-Toth, M. and Reiser, G. 2006b. Mesotrypsin, a brain trypsin, activates selectively proteinase-activated receptor-1, but not proteinase-activated receptor-2, in rat astrocytes. J. Neurochem. 99:759–769

    CAS  Google Scholar 

  • Wang, Y., Luo, W. and Reiser, G. 2007a. The role of calcium in protease-activated receptor-induced secretion of chemokine GRO/CINC-1 in rat brain astrocytes. J. Neurochem. 103:814–819

    CAS  Google Scholar 

  • Wang, Y., Luo, W. and Reiser, G. 2007b. Activation of protease-activated receptors in astrocytes evokes a novel neuroprotective pathway through release of chemokines of the cytokine-induced neutrophil chemoattractant family. Eur. J. Neurosci. 26:3159–3168

    Google Scholar 

  • Wang, Y., Luo, W. and Reiser, G. 2007c. Proteinase-activated receptor-1 and -2 induce the release of chemokine GRO/CINC-1 from rat astrocytes via differential activation of JNK isoforms, evoking multiple protective pathways in brain. Biochem. J. 401:65–78

    CAS  Google Scholar 

  • Wiegand, U., Corbach, S., Minn, A., Kang, J. and Müller-Hill, B. 1993. Cloning of the cDNA encoding human brain trypsinogen and characterization of its product. Gene 136:167–175

    Google Scholar 

  • Xi, G., Keep, R. F., Hua, Y., Xiang, J. and Hoff, J. T. 1999. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke 30:1247–1255

    CAS  PubMed  Google Scholar 

  • Xi, G., Hua, Y., Keep, R. F. and Hoff, J. T. 2000. Induction of colligin may attenuate brain edema following intracerebral hemorrhage. Acta Neurochir. Suppl. 76:501–505

    CAS  PubMed  Google Scholar 

  • Xi, G., Hua, Y., Keep, R. F., Duong, H. K. and Hoff, J. T. 2001. Activation of p44/42 mitogen activated protein kinases in thrombin-induced brain tolerance. Brain Res. 895:153–159

    CAS  PubMed  Google Scholar 

  • Xi, G., Hua, Y., Wu, J. and Keep, R. F. 2002. Increase of brain thrombin concentration in cerebral ischemia. Stroke 33:399

    Google Scholar 

  • Xi, G., Reiser, G. and Keep, R. F. 2003. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: Deleterious or protective? J. Neurochem. 84:3–9

    CAS  PubMed  Google Scholar 

  • Xu, W. F., Andersen, H., Whitmore, T. E., Presnell, S. R., Yee, D. P., Ching, A., Gilbert, T., Davie, E. W. and Foster, D. C. 1998. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95:6642–6646

    CAS  PubMed  Google Scholar 

  • Xue, M. and Del Bigio, M. R. 2001. Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke 32:2164–2169

    CAS  PubMed  Google Scholar 

  • Xue, M., Hollenberg, M. D. and Yong, V. W. 2006. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J. Neurosci. 26:10281–10291

    CAS  PubMed  Google Scholar 

  • Yamasaki, Y., Matsuo, Y., Matsuura, N., Onodera, H., Itoyama, Y. and Kogure, K. 1995. Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 26:318–322

    CAS  PubMed  Google Scholar 

  • Yang, M. S., Lee, J., Ji, K. A., Min, K. J., Lee, M. A., Jou, I. and Joe, E. 2004. Thrombin induces suppressor of cytokine signaling 3 expression in brain microglia via protein kinase Cdelta activation. Biochem. Biophys. Res. Commun. 317:811–816

    CAS  PubMed  Google Scholar 

  • Yang, S., Hua, Y., Nakamura, T., Keep, R. F. and Xi, G. 2006. Up-regulation of brain ceruloplasmin in thrombin preconditioning. Acta Neurochir. Suppl. 96:203–206

    CAS  PubMed  Google Scholar 

  • Zurn, A. D., Nick, H. and Monard, D. 1988. A glia-derived nexin promotes neurite outgrowth in cultured chick sympathetic neurons. Dev. Neurosci. 10:17–24

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luo, W., Wang, Y., Reiser*, G. (2009). The Role of Thrombin and Thrombin Receptors in the Brain. In: Maragoudakis, M., Tsopanoglou, N. (eds) Thrombin. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09637-7_8

Download citation

Publish with us

Policies and ethics