Skip to main content

Vibrational Dynamics and Guest–Host Coupling in Clathrate Hydrates

  • Chapter
Neutron Applications in Earth, Energy and Environmental Sciences

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Clathrate hydrates may turn out either a blessing or a curse for mankind. On one hand, they constitute a huge reservoir of fossil fuel. On the other hand, their decomposition may liberate large amounts of green house gas and have disastrous consequences on sea floor stability. It is thus of paramount importance to understand the formation and stability of these guest–host compounds. Neutron diffraction has successfully occupied a prominent place on the stage of these scientific investigations. Complete understanding, however, is not achieved without an explanation for the thermal properties of clathrates. In particular, the thermal conductivity has a large influence on clathrate formation and conservation. Neutron spectroscopy allows probing the microscopic dynamics of clathrate hydrates. We will show how comparative studies of vibrations in clathrate hydrates give insight into the coupling of the guest to the host lattice. This coupling together with the anharmonicity of the vibrational modes is shown to lay the foundations for the peculiar thermodynamic properties of clathrate hydrates. The results obtained reach far beyond the specific clathrate system. Similar mechanisms are expected to be at work in any guest–host complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a good overview, see Kuhs and Hansen [11] and references therein.

  2. 2.

    He used the wording “There may thus arise a structural combination of two substances which remain associated not through strong attraction between them but because strong mutual binding of the molecules of one sort only makes possible the firm enclosure of the other. It is suggested that the general character of this type of combination should be indicated by the description clathrate compound – clathratus, enclosed or protected by cross bars of a grating.”

  3. 3.

    Changing the structure, atomic masses, or atomic interactions alters the dispersion relations. While a reduction in the mean slope of the dispersion (lower average \(v_{\rm ph}\)) may favor a lower conductivity, the effect may in exceptional cases be compensated by a resulting reduced phase space for scattering [31].

  4. 4.

    Only in very pure samples of large dimensions the very few remaining Umklapp processes are the limiting factor for thermal conductivity at low temperature.

  5. 5.

    For the case of 1,3–dioxolane hydrate, the observation that only rapid formation of the hydrate results in a steadily increasing \(\kappa(T)\) upon heating [37] renders the interpretation even more difficult. These results could, however, not be reproduced on other systems [28].

  6. 6.

    It has, however, to be noted that the formalism proposed here relies on the existence of well-defined excitations, which can be enumerated as a function of energy (i.e., via a density-of-states). It is not easily applicable when the microscopic motions have a relaxation character as is the case for THF clathrate in the rotator phase.

  7. 7.

    The correction of multi-phonon contributions is possible [51]. The description of the various aspects of this problem is, however, beyond the scope of the basic introduction given in this section.

  8. 8.

    The external modes of the \({\rm H}_{2}{\rm O}\) molecule are found at still higher frequencies.

  9. 9.

    This holds provided that the variation of the scattering induced by the Debye-Waller factor and higher-order phonon terms compensate, which is normally the case over quite extended temperature ranges [54].

  10. 10.

    We classify here the modes according to their polarization character. So a mode with in-phase motion of the atoms is considered acoustic even if it has already crossed lower lying dispersion sheets, and thus in a purely academic sense should be denoted as optic.

References

  1. E.D. Sloan. Gas Hydrates: Relavance to World Margin Stability and Climate Change. Geol. Soc. Lond. 1998.

    Google Scholar 

  2. E.D. Sloan and C.A. Koh. Clathrate Hydrates of Natural Gases (Chemical Industries Series). CRC Press Boca Raton, FL 2007.

    Book  Google Scholar 

  3. K. Kvenvolden. Natural Gas Hydrate: Introduction and History of Discovery. Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000.

    Google Scholar 

  4. T.S. Collett and V.A. Kuuskraa. Oil Gas J., 96:90. 1998.

    Google Scholar 

  5. M.D. Max, A.H. Johnson, and W.P. Dillon. Economic Geology of Natural Gas Hydrates. Springer, Berlin 2006.

    Google Scholar 

  6. M.D. Max. Natural Gas Hydrate in Oceanic and Permafrost Environments (Constal Systems and Continental Margins). Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003.

    Google Scholar 

  7. A. Gupta, T.J. Kneafsey, G.J. Moridis, Y. Seol, M.B. Kowalsky, and E.D. Sloan Jr. J. Phys. Chem. B, 110(33):16384, 2006.

    Article  CAS  Google Scholar 

  8. E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw, and R.P. Warzinski, J. Phys. Chem. B, 111(46):13194, 2007

    Article  CAS  Google Scholar 

  9. C. Ruppel. Thermal State of the Gas Hydrate Reservoir. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.

    Google Scholar 

  10. N.W. Ascroft and N.D. Mermin. Solid State Physics. Saunders College, Philadelphia, 1976.

    Google Scholar 

  11. W.F. Kuhs and T.C. Hansen. Rev. Mineral. Geochem., 63:171, 2006.

    Article  CAS  Google Scholar 

  12. H.Tanaka and K. Kiyohara. J. Chem. Phys., 98:4098, 1993.

    Article  CAS  Google Scholar 

  13. H.M. Powell. J. Chem. Soc., page 61, 1948

    Google Scholar 

  14. H. Davy. Philos. Trans. R. Soc. Lond., 101:1, 1811.

    Google Scholar 

  15. M. Faraday. Philos. Trans. R. Soc. Lond., 113:160, 1823.

    Google Scholar 

  16. M. von Stackelberg and H.R. Muller. Z. Elektrochem., 58:25, 1954.

    Google Scholar 

  17. C.A. Koh. Chem. Soc. Rev., 31:157, 2002.

    Article  CAS  Google Scholar 

  18. V. Chihaia, S. Adams, and W.F. Kuhs. Chem. Phys., 297:271, 2004.

    Article  CAS  Google Scholar 

  19. Y. Dyadin, E. Larionow, A. Manakov, F. Zhurko, E. Aladko, and T. Mikina. Mendeleev Commun., 5:209, 1999.

    Article  Google Scholar 

  20. W.L. Mao, H.-K. Mao, A.F. Goncharov, V.V. Struzhkin, Q. Guo, J. Hu, J. Shu, R.J. Hemley, M.Somayazulu, and Y. Zhao. Science, 297:2247, 2002.

    Article  CAS  Google Scholar 

  21. K.A. Lokshin, Y. Zhao, D. He, W.L. Mao, H. -K. Mao, R.J. Hemley, M.V. Lobanov, and M. Greenblatt. Phys. Rev. Lett., 93:125503, 2004.

    Article  Google Scholar 

  22. L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester C.A. Koh, S.F. Dec, K.N. Marsh, and E.D. Sloan. Science, 306:469, 2004.

    Article  CAS  Google Scholar 

  23. J.H. van der Waals and J.C. Plateeuw. Adv. Chem Phys., 11:1, 1959.

    Google Scholar 

  24. S.R. Zele, S.-Y. Lee, and G.D. Holder. J. Phys. Chem. B, 103:10250,1999.

    Article  CAS  Google Scholar 

  25. K.C. Hester, Z.Huo, A.L. Ballard, C.A. Koh, K.T. Miller, and E.D. Sloan. J. Phys. Chem. B, 111:8830, 2007.

    Article  CAS  Google Scholar 

  26. A.J.H. McGaughey, M.I. Hussein, E.S. Landry, M.Kaviany, and G.M. Hulbert. Phys. Rev. B, 74:104304, 2006.

    Article  Google Scholar 

  27. J. Dong, O.F. Sankey, and C.W. Myles. Phys. Rev. Lett., 86:2361, 2001.

    Article  CAS  Google Scholar 

  28. O. Andersson and A. Inaba. Phys. Chem. Chem. Phys., 7:1441, 2005.

    Article  CAS  Google Scholar 

  29. J.M. Ziman. Electrons and Phonons. Claredon Press, Oxford, 1960.

    Google Scholar 

  30. R. Peierls. Ann. Phys. (Leipzig), 3:1055,1929.

    CAS  Google Scholar 

  31. D.A. Broido and T.L. Reinecke. Phys. Rev. B, 70:081310(R), 2004.

    Article  Google Scholar 

  32. A.I. Krivchikov, B.Ya. Gorodilov, O.A. Korolyuk, V.G. Manzhelii, O.O. Romantsova, H. Conrad, W. Press, J.S. Tse, and D.D. Klug. Phys. Rev. B, 73:64203, 2006.

    Article  Google Scholar 

  33. A.I. Krivchikov, O.A. Korolyuk, and O.O Romantsova. Low Temp. Phys., 33:612, 2007.

    Article  CAS  Google Scholar 

  34. O. Andersson and H. Suga. J. Phys. Chem. Solids, 57:125, 1996

    Article  CAS  Google Scholar 

  35. A.I. Krivchikov, V.G. Manzhelii, O.A. Korolyuk, B.Ya. Gorodilov, and O.O. Romantsova. Phys. Chem. Chem. Phys., 7:728, 2005.

    Article  CAS  Google Scholar 

  36. P. Andresson and R.G. Ross. J. Phys. C; Solid State phys., 16:1423, 1983.

    Article  Google Scholar 

  37. N. Ahmad and W.A. Phillips. Solid State Common., 63:167, 1987.

    Article  CAS  Google Scholar 

  38. A.I. Krivchikov, B.Ya. Gorodilov,O.A. Korolyuk, V.G. Manzhelii, H. Conrad, and W. Press. J. Low Temp. Phys., 139:693, 2005.

    Article  CAS  Google Scholar 

  39. U. Buchenau, Yu.M. Galperin, V.L. Gurevich, D.A. Parshin, M.A. Ramos, and H.R. Schober. Phys. Rev. B, 46:2798, 1992.

    Article  Google Scholar 

  40. M.A. Ramos and U. Buchenau. Phys. Rev. B, 55:5749, 1997.

    Article  CAS  Google Scholar 

  41. H. Schober, M. Koza., A. Toelle, F. Fujara, C.A. Angell, and R. Boehmar. Physica B, 241:897, 1998.

    Article  Google Scholar 

  42. H. Schober, M. Koza, A. Toelle, C. Masciovecchio, F. Sette, and F. Fujara. Phys. Rev. Lett., 85:4100, 2000.

    Article  CAS  Google Scholar 

  43. O. Andersson and H. Suga. Phys. Rev. B, 65:140201(R), 2002.

    Article  Google Scholar 

  44. M.M. Koza. B. Geil, H. Schober, and F. Natali. Phys. Chem. Chem. Phys., 7:1423, 2005.

    Article  CAS  Google Scholar 

  45. M.A. White and M.T. MacLean. J. Phys. Chem., 89:1380,1985.

    Article  CAS  Google Scholar 

  46. M.A. White. J. de Physique, 48:C1-565, 1987.

    Article  Google Scholar 

  47. J. Neumann and E.von Wigner. Physik Z., 30:465, 1929.

    Google Scholar 

  48. M.M. Koza. Phys. Rev. B.78:064303, 2008.

    Article  Google Scholar 

  49. V.F. Sears. Neutron News, 3:26, 1992.

    Article  Google Scholar 

  50. S.W. Lovesey. Theory of Neutron Scattering from Condensed Matter. Oxford Science Publishers, Oxford, 1984.

    Google Scholar 

  51. H. Schober. J. Phys. IV France, 103:173, 2003.

    Article  CAS  Google Scholar 

  52. M.M. Bredov, B.A. Kotov, N.M. Okuneva, V.S. Oskotskii, and A.L. Shak-Budagov. Sov. Phys. Solid State, 9:214, 1967.

    Google Scholar 

  53. S.N. Taraskin and S.R. Elliott. Phys. Rev. B, 55:117, 1997.

    Article  CAS  Google Scholar 

  54. H. Schober, A. Toelle, B. Renker, R. Heid, and F. Gompf. Phys. Rev. B. 56:5937, 1997.

    Article  CAS  Google Scholar 

  55. J. Dawidowski, F.J. Bermejo, and J.R. Granada. Phys. Rev. B, 58:706, 1998.

    Article  CAS  Google Scholar 

  56. M. Prager and W. Press. J. Chem. Phys., 125:214703, 2006.

    Article  CAS  Google Scholar 

  57. H. Conrad, W.F. Kuhs, K. Nuenighoff, C. Pohl, M. Prager, and W. Schweika. Physica B, 350:e647, 2004.

    Article  CAS  Google Scholar 

  58. B. Chazallon, H. Itoh, M. Koza, W.F. Kuhs, and H. Schober. Phys. Chem. Chem. Phys., 4:4809. 2002.

    Article  CAS  Google Scholar 

  59. H. Schober, H. Itoh, A. Klapproth, V. Chihaia, and W. F. Kuhs. Eur. Phys. J. E, 12:41, 2003.

    CAS  Google Scholar 

  60. J. Li. J. Chem. Phys., 105:6733, 1996.

    Article  CAS  Google Scholar 

  61. K.T. Tait, F. Trouw, Y. Zhao, C.M. Brown, and R.T. Downs. J. Chem. Phys., 127:134505, 2007.

    Article  Google Scholar 

  62. J.S. Tse, V.P. Shpakov, V.R. Belosludov, F. Trouw, Y.P. Handa, and W. Press. Europhys. Lett., 54:354, 2001.

    Article  CAS  Google Scholar 

  63. C. Gutt, J. Baumert, W. Press, J.S. Tse, and S. Janssen. J. Chem. Phys., 116:3795, 2002.

    Article  CAS  Google Scholar 

  64. J.S. Tse, D.D. Klug, J.Y. Zhao, W. Sturhahn, E.E. Alp, J. Baumert, C. Gutt, M.R. Johnson, and W. Press. Nature Materials, 4:917, 2005.

    Article  CAS  Google Scholar 

  65. J. Baumert, C. Gutt, V.P. Shpakov, J.S. Tse, M. Krisch, M. Mueller, H. Requardt, D.D. Klug, S. Janssen, and W. Press. Phys. Rev. B, 68:174301, 2003.

    Article  Google Scholar 

  66. B. Renker. in Physics and Chemistry of Ice. Royal Society of Canada, Ottawa, 1973.

    Google Scholar 

  67. F. Sette, G. Ruocco, M. Krisch, C. Masciovecchio, R. Verbeni, and U. Bergmann. Phys. Rev. Lett., 77:83, 1996.

    Article  CAS  Google Scholar 

  68. G. Ruocco, and F. Sette. J. Phys.: Cond. Matter, 11:R259, 1999.

    Article  CAS  Google Scholar 

  69. M.M. Koza, H. Schober, B. Geil, M. Lorenzen, and H. Requardt. Phys. Rev. B, 69:024204, 2004.

    Article  Google Scholar 

  70. R.E. Gagnon, H. Kiefte, and M.J. Clouter. J. Chem. Phys., 92:1909, 1990.

    Article  CAS  Google Scholar 

  71. G. Ruocco, F. Sette, M. Krisch, U. Bergmann, C. Masciovecchio, and R. Verbeni. Phys. Rev. B, 54:14892, 1996.

    Article  CAS  Google Scholar 

  72. E.L. Gromnitskaya, O.V. Stal'gorova, V.V. Brazhkin, and A.G. Lyapin. Phys. Rev. B, 64:094205, 2001.

    Article  Google Scholar 

  73. E.L. Gromnitskaya, O.V. Stal'gorova, A.G. Lyapin, V.V. Brazhkin, and O.B. Tarutin. JETP Lett., 78:488, 2003.

    Article  CAS  Google Scholar 

  74. H. Kiefte, M.J. Clouter, and R.E. Gagnon. J. Phys. Chem., 89:3103, 1985.

    Article  CAS  Google Scholar 

  75. H. Shimizu, T. Kumazaki, T. Kume, and S. Sasaki. Phys. Rev. B, 65:212102, 2002.

    Article  Google Scholar 

  76. H. Itoh, J.S. Tse, and K. Kawamura. J. Chem. Phys., 115:9414, 2001.

    Article  CAS  Google Scholar 

  77. J.S. Tse, V.P. Shpakov, V.V. Murashov, and V.R. Belosludov. J. Chem. Phys., 107:9271, 1997.

    Article  CAS  Google Scholar 

  78. E.P. van Klaveren, J.P.J. Michels, J.A. Schouten, D.D. Klug, and J.S. Tse. J. Chem. Phys., 117:6637, 2002.

    Article  Google Scholar 

  79. S. Horikawa, H. Itoh, J. Tabata, K. Kawamura, and T. Hondoh. J. Phys. Chem. B, 101:6290, 1997.

    Article  CAS  Google Scholar 

  80. W . Press and A. Kollmar. Solid State Commun.., 17:405, 1975.

    Article  CAS  Google Scholar 

  81. W. Press. Single Particle Rotations in Molecular Crystals. Springer Tracts in Modern Physics Springer, Berlin 1981.

    Google Scholar 

  82. B. Asmussen, M. Prager, W. Press, W. Blank, and C.J. Carlile. J. Chem. Phys., 97:1332, 1992.

    Article  CAS  Google Scholar 

  83. J.S. Tse, C.I. Ratcliffe, B.M. Powell, V.F. Sears, and Y.P. Handa. J. Phys. Chem. A, 101:4491, 1997.

    Article  CAS  Google Scholar 

  84. C. Gutt, B. Asmussen, W. Press, C. Merkl, H. Casalta, J. Greinert, G. Bohrmann, J.S. Tse, and A. Hueller. Europhys. Lett., 48:269, 1999.

    Article  CAS  Google Scholar 

  85. C. Gutt, W. Press, A. Hueller, J. S. Tse, and H. Casalta. J. Chem. Phys., 114:4160, 2001.

    Article  CAS  Google Scholar 

  86. C. Gutt, B. Asmussen, W. Press. M.R. Johnson, Y.P. Handa, and J.S. Tse. J. Chem. Phys., 113:4713, 2000.

    Article  CAS  Google Scholar 

  87. J. Baumert, C. Gutt, M. Krish, H. Requardt, M. Mueller, J. S. Tse, D. D. Klug, and W. Press. Phys. Rev. B, 72:054302, 2005.

    Article  Google Scholar 

  88. S. Grieger, H. Friedrich, B. Asmussen, K. Guckelsberger, D. Nettling, W. Press, and R. Scherm. Z. Phys. B: Cond. Matt., 87:203, 1992.

    Article  CAS  Google Scholar 

  89. S. Grieger, H. Friedrich, K. Guckelsberger, R. Scherm, and W. Press. J. Chem. Phys., 109:3161, 1998.

    Article  CAS  Google Scholar 

  90. L. Ulivi, M. Celli, A. Giannasi, A.J. Ramirez-Cuesta, D.J. Bull, and M. Zoppi. Phys. Rev. B, 76:161401(R), 2007.

    Article  Google Scholar 

  91. M. Xu, Y.S. Elmatad, F. Sebastianelli, J. W. Moskowitz, and Z. Bacic. J. Phys. Chem. B, 110:24806, 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Koza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Science+Business Media, LLC

About this chapter

Cite this chapter

Koza, M.M., Schober, H. (2009). Vibrational Dynamics and Guest–Host Coupling in Clathrate Hydrates. In: Liang, L., Rinaldi, R., Schober, H. (eds) Neutron Applications in Earth, Energy and Environmental Sciences. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09416-8_12

Download citation

Publish with us

Policies and ethics