Skip to main content

Advances in the Use of Enantiopure β-Lactams for the Synthesis of Biologically Active Compounds of Medicinal Interests

  • Chapter
  • First Online:

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 30))

Abstract

β-Lactams play a significant role in organic synthesis in addition to its importance as the core structure of β-lactam antibiotics. The “β-lactam synthon method” introduced in late 1970s has greatly advanced the use of β-lactams as key intermediates for the synthesis of biologically active compounds such as nonprotein amino acids, peptides, peptidomimetics, and complex natural products and congeners. This chapter describes the advances in the synthesis of β-lactams with excellent enantiopurity, useful patterns of β-lactam ring cleavage, ring-opening coupling, and applications of the β-lactam synthon method to the synthesis of biologically active compounds of medicinal interests. In addition, novel β-lactams, exhibiting potent activities, not as antibacterials but as anticancer and cholesterol-controlling agents, are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Georg GI (1992) The organic chemistry of β-lactams. VCH, New York, and references cited therein

    Google Scholar 

  2. Ojima I, Inaba S, Yoshida K (1977) New and effective route to β-lactams. The reaction of ketene silyl acetals with Schiff bases promoted by titanium tetrachloride. Tetrahedron Lett 18:3643–3646

    Article  Google Scholar 

  3. Hatanaka N, Abe R, Ojima I (1981) β-lactam as synthetic intermediate: synthesis of leucine-enkephalin. Chem Lett 10:1297–1298

    Article  Google Scholar 

  4. Ojima I, Shimizu N, Qiu X, Chen H-JC, Nakahashi K (1987) New aspects of β-lactam chemistry: β-lactams as chiral building blocks. Bull Soc Chim France 649–658

    Google Scholar 

  5. Ojima I (1992) β-lactam synthon method – enantiomerically pure β-lactams as synthetic intermediates. In: Georg GI (ed) The organic chemistry of β-lactams and β-lactam antibiotics. VCH Publishers, New York, pp 197–255

    Google Scholar 

  6. Ojima I, Habus I, Zhao M, Zucco M, Park Y et al (1992) New and efficient approaches to the semisynthesis of taxol and its c-13 side chain analogs by means of β-lactam synthon method. Tetrahedron 48:6985–7012

    Article  CAS  Google Scholar 

  7. Ojima I (1995) Recent advances in the β-lactam synthon method. Acc Chem Res 28:383–389

    Article  CAS  Google Scholar 

  8. Ojima I, Delaloge F (1997) Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem Soc Rev 26:377–386

    Article  CAS  Google Scholar 

  9. Alcaide B, Almendros P (2004) Beta-lactams as versatile synthetic intermediates for the preparation of heterocycles of biological interest. Curr Med Chem 11:1921–1949

    Article  CAS  Google Scholar 

  10. Deshmukh AR, Bhawal BM, Krishnaswamy D, Govande VV, Shinkre BA et al (2004) Azetidin-2-ones, synthon for biologically important compounds. Curr Med Chem 11:1889–1920

    Article  CAS  Google Scholar 

  11. Chen J, Kuznetsova L, Ungureanu I, Ojima I (2005) Recent advances in the synthesis of α-hydroxy-β-amino acids and their use in the SAR studies of taxane anticancer agents. In: Juaristi E, Soloshonok V (eds) Enantioselective synthesis of amino acids, 2nd edn. Wiley, New York, pp 447–476

    Chapter  Google Scholar 

  12. Ojima I, Kuznetsova L, Ungureanu IM, Pepe A, Zanardi I et al (2005) Fluoro-β-lactams as useful building blocks for the synthesis of fluorinated amino acids, dipeptides, and taxoids. In: Soloshonok V (ed) ACS Symp Ser 911: Fluorine-containing Synthons. American Chemical Society/Oxford University Press, Washington, DC, pp 544–561

    Google Scholar 

  13. Staudinger H (1907) Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann Chem 356:51–123

    Article  CAS  Google Scholar 

  14. Cossio FP, Arrieta A, Sierra MA (2008) The mechanism of the ketene-imine (Staudinger) reaction in its centennial: still an unsolved problem? Acc Chem Res 41:925–936

    Article  CAS  Google Scholar 

  15. Venturini A, Gonzalez J (2006) Mechanistic aspects of the ketene-imine cycloaddition reactions. Mini Rev Med Chem 3:185–194

    Article  CAS  Google Scholar 

  16. Dumas S, Hegedus LS (1994) Electronic effects on the stereochemical outcome of the photochemical reaction of chromium carbene compleses with imines to form β-lactams. J Org Chem 59:4967–4971

    Article  CAS  Google Scholar 

  17. Georg GI, Ravikumar VT (1993) Stereocontrolled ketene-imine cycloaddition reactions. In: Georg GI (ed) Organic chemistry β-lactams. VCH Publishing, New York, pp 295–368

    Google Scholar 

  18. Hegedus LS, Montgomery J, Narukawa Y, Snustad DC (1991) A contribution to the confusion surrounding the reaction of ketenes with imines to produce β-lactams. A comparison of stereoselectivity dependence on the method of ketene generation: acid chloride/triethylamine s photolysis of chromium carbene complexes. J Am Chem Soc 113:5784–5791

    Article  CAS  Google Scholar 

  19. Cossio FP, Ugalde JM, Lopez X, Lecea B, Palomo C (1993) A semiempirical theoretical study on hte formation of 5784-5791-lactams from ketenes and imine. J Am Chem Soc 115:995–1004

    Article  CAS  Google Scholar 

  20. Lopez R, Sordo TL, Sordo JA, Gonzalez J (1993) Torquoelectronic effect in the control of the stereoselectivity of ketene-imine cycloaddition reactions. J Org Chem 58:7036–7037

    Article  CAS  Google Scholar 

  21. Cossio FP, Arrieta A, Lecea B, Ugalde JM (1994) Chiral control in the staudinger reaction between ketenes and imines. A theoretical SCF-MO study on asymmetric torquoselectivity. J Am Chem Soc 116:2085–2093

    Article  CAS  Google Scholar 

  22. Wang Y, Liang Y, Jiao L, Du D-M, Xu J (2006) Do reaction conditions affect the stereoselectivity in the Staudinger reaction? J Org Chem 71:6983–6990

    Article  CAS  Google Scholar 

  23. Aszodi J, Bonnet A, Teusch G (1990) Enantioselective synthesis of a versatile 2-isocepern synthon. Tetrahedron 46:1579–1586

    Article  CAS  Google Scholar 

  24. Georg G, Wu Z (1994) An investigation of (R)-(+)-1-(1-naphthyl)ethylimines and (R)-(+)-1-(phenyl)ethylimines as chiral templates in the staudinger reaction. Tetrahedron Lett 35:381–384

    Article  CAS  Google Scholar 

  25. Gunda TE, Sztaricskai F (1997) 2-Amino-1-phenyl-propan-1,3-diol as chiral auxiliary. Application in the synthesis of cis 3-Phthalimido-4-styryl-2-azetidinones. Tetrahedron 53:7985–7998

    Article  CAS  Google Scholar 

  26. Bose A, Manhas M, van der Veen J, Bari S, Wagle D (1992) Stereoregulated synthesis of β-lactams from Schiff bases derived from threonine esters. Tetrahedron 48:4831–4844

    Article  CAS  Google Scholar 

  27. Ojima I, Nakahashi K, Brandstadter SM, Hatanaka N (1987) Remarkable effects of lone pair - lone pair interactions on the extremely stereoselective [2+2] cycloaddition of azidoketene to chiral 3-imino-β-lactams. J Am Chem Soc 109:1798–1805

    Article  CAS  Google Scholar 

  28. Palomo C, Oiarbide M, Esnal A, Landa A, Miranda J et al (1998) practical synthesis of α-amino acid N-carboxy anhydrides of polyhydroxylated α-amino acids from β-lactam frameworks. Model studies toward the synthesis of directly linked peptidyl nucleoside antibiotics. J Org Chem 63:5838–5846

    Article  CAS  Google Scholar 

  29. Hubschwerlen C, Schmid G (1983) An enantioselective β-lactam synthesis starting from L-(S)-glyceraldehyde acetonide. Helv Chim Acta 66:2206–2209

    Article  CAS  Google Scholar 

  30. Banik B, Manhas M, Kaluza Z, Barakat J, Bose A (1992) Microwave-induced organic reaction enhancement chemistry.4 convenient synthesis of enantiopure α-hydroxy-β-lactams. Tetrahedron Lett 33:3603–3606

    Article  CAS  Google Scholar 

  31. Evans D, Williams J (1988) The asymmetric synthesis of β-lactam antibiotics-v. Application of chiral α, β-epoxyimines in ketene-imine cycloaddition reactions leading to homochiral 3-aminoazetidinones. Tetrahedron Lett 29:5065–5068

    Article  CAS  Google Scholar 

  32. Palomo C, Cossio F, Cuevas C, Leces B, Mielgo A et al (1992) Contribution to the development of new substitution patterns of optically active β-lactams: synthesis of homochiral 4-(1-Aminoalkyl)azetidin-2-ones from N-(tert-Butyloxycarbonyl) α-amino aldehyde-derived imines via asymmetric Staudinger reaction. J Am Chem Soc 114:9360–9369

    Article  CAS  Google Scholar 

  33. Li L, Thomas SA, Klein LL, Yeung CM, Maring CJ et al (1994) Synthesis and biological evaluation of C-3`-modified analogs of 9(R)-dihydrotaxol. J Med Chem 37:2655–2663

    Article  CAS  Google Scholar 

  34. Wagle DR, Garai C, Chiang J, Monteleone MG, Kurys BE et al (1988) Studies of lactams. 81. Enantiospecific synthesis and absolute configuration of substituted β-lactams from D-glyceraldehyde acetonide. J Org Chem 53:4227–4236

    Article  CAS  Google Scholar 

  35. Evans DA, Sjogren EB (1985) The asymmetric synthesis of b-lactam antibiotics-1. Application of chiral oxazolidinones in the Staudinger reaction. Tetrahedron Lett 26:3783–3786

    Article  CAS  Google Scholar 

  36. Ruhland B, Bhandari A, Gordon E, Gallop M (1996) Solid-supported combinatorial synthesis of structually diverse β-lactams. J Am Chem Soc 118:253–254

    Article  CAS  Google Scholar 

  37. Delpiccolo C, Mata E (2002) Stereoselective solid-phase synthesis of 3,4-substituted azetidinones as key intermediates for mono- and multicyclic β-lactam antibiotics and enzyme inhibitors. Tetrahedron Asymmetry 13:905–910

    Article  CAS  Google Scholar 

  38. Delpiccolo CML, Mendez L, Fraga A, Mata EG (2005) Exploring the solid-phase synthesis of 3,4-disubstituted β-lactams: scope and limitations. J Comb Chem 7:331–344

    Article  CAS  Google Scholar 

  39. Alcaide B, Rodriguez-Vicente A (1999) A convenient trans-stereoselective synthesis of phenanthridine derived 2-azetidinones using the Staudinger ketene-imine cycloaddition. Tetrahedron Lett 40:2005–2006

    Article  CAS  Google Scholar 

  40. Banik BK, Banik I, Becker FF (2010) Asymmetric synthesis of anticancer β-lactams via Staudinger reaction of chrial ketene from carbohydrate. Euro J Med Chem 45:846–848

    Article  CAS  Google Scholar 

  41. Guillon CD, Koppel GA, Brownstein MJ, Chaney MO, Ferris CF et al (2007) Azetidinones as vasopressin V1a antagonists. Bioorg Med Chem 15:2054–2080

    Article  CAS  Google Scholar 

  42. Cremonesi G, Croce P, Fontana F, La Rosa C (2010) Enantiomerically pure polyheterocyclic spiro-β-lactams from trans-4-hydroxy-L-proline. J Org Chem 75:2010–2017

    Article  CAS  Google Scholar 

  43. Cremonesi G, Croce PD, Fontana F, Fomi A, La Rosa C (2005) Asymmetric synthesis of 1,3-thiazolidine-derived spiro-β-lactams via a Staudinger reaction between chiral ketenes and imines. Tetrahedron Asymmetry 16:3371–3379

    Article  CAS  Google Scholar 

  44. Chincholkar P, Puranik VG, Deshmukh ARAS (2007) Stereoselective synthesis of spiro-β-lactams using d-(+)-glucose derived chiral pool: remarkable influence of the torquoelectronic effect. Tetrahedron 63:9179–9187

    Article  CAS  Google Scholar 

  45. Brieva R, Crich JZ, Sih CJ (1993) Chemoenzymic synthesis of the C-13 side chain of taxol: optically active 3-hydroxy-4-phenyl β-lactam derivatives. J Org Chem 58:1068–1075

    Article  CAS  Google Scholar 

  46. Banik BK, Manhas MS, Bose AK (1994) Stereospecific glycosylation via Ferrier rearrangement for optical resolution. J Org Chem 59:4714–4716

    Article  CAS  Google Scholar 

  47. Patel RN (1995) Enzymic processes for the resolution of enantiomeric mixtures of compounds useful as intermediates in the preparation of taxanes. Eur Pat Appl 634492 A1: Bristol-Myers Squibb Co., USA

    Google Scholar 

  48. Holton RA, Vu P (2001) Enzymatic process for the resolution of enantiomeric mixtures of β-lactams. PCT Int Appl WO 2001/029245: Florida State University, USA

    Google Scholar 

  49. Kuznetsova L, Ungureanu I, Pepe A, Zanardi I, Wu X et al (2004) Trifluoromethyl- and difluoromethyl-β-lactams as useful building blocks for the synthesis of fluorinated amino acids, dipeptides, and fluoro-taxoids. J Fluor Chem 125:487–500

    Article  CAS  Google Scholar 

  50. Kuznetsova LV, Pepe A, Ungureanu IM, Pera P, Bernacki RJ et al (2008) Syntheses and structure-activity relationships of novel 3'-difluoromethyl and 3'-trifluoromethyl-taxoids. J Fluor Chem 129:817–828

    Article  CAS  Google Scholar 

  51. France S, Weatherwax A, Taggi AE, Lectka T (2004) Advances in the catalytic, asymmetric synthesis of β-lactams. Acc Chem Res 37:592–600

    Article  CAS  Google Scholar 

  52. Wack H, Drury W, Taggi A, Ferraris D, Lectka T (1999) Nucleophilic metal complexes as acylation catalysts: solvent-dependent "switch" mechanisms leading to the first catalyzed Staudinger reaction. Org Lett 1:1985–1988

    Article  CAS  Google Scholar 

  53. Taggi A, Hafez A, Wack H, Young B, Drury W et al (2000) Catalytic, asymmetric synthesis of β-lactams. J Am Chem Soc 122:7831–7832

    Article  CAS  Google Scholar 

  54. Taggi A, Hafez A, Wack H, Young B, Ferraris D et al (2002) The development of the first catalyzed reaction of ketenes and imines: catalytic, asymmetric synthesis of β-lactams. J Am Chem Soc 124:6626–6635

    Article  CAS  Google Scholar 

  55. France S, Wack H, Hafez A, Taggi A, Witsil D et al (2002) Bifunctional asymmetric catalysis: a tandem nucleophile/lewis acid promoted synthesis of β-lactams. Org Lett 4:1603–1605

    Article  CAS  Google Scholar 

  56. Zhang Y-R et al (2008) Chiral N-heterocyclic carbene catalyzed staudinger reaction of ketenes with imines: highly enantioselective synthesis of N-Boc-β-lactams. Org Lett 10:277–280

    Article  CAS  Google Scholar 

  57. Huang X, Chen X, Ye S (2009) Enantioselective synthesis of aza-β-lactams via NHC-catalyzed cycloaddition of ketenes with diazenedicarboxylates. J Org Chem 74:7585–7587

    Article  CAS  Google Scholar 

  58. Duguet N et al (2008) N-Heterocyclic carbene catalysed β-lactam synthesis. Org Biomol Chem 6:1108–1113

    Article  CAS  Google Scholar 

  59. Ojima I, Habus I (1990) Asymmetric synthesis of β-lactams by chiral ester enolate – imine condensation. Tetrahedron Lett 31:4289–4292

    Article  CAS  Google Scholar 

  60. Ojima I, Habus I, Zhao M (1991) Efficient and practical asymmetric synthesis of the taxol C-13 side chain, N-benzoyl-(2R,3S)-3-phenylisoserine, and its analogues via chiral 3-hydroxy-4-aryl-β-lactams through chiral ester Enolate-imine cyclocondensation. J Org Chem 56:1681–1683

    Article  CAS  Google Scholar 

  61. Ojima I, Park YH, Sun CM, Zhao M, Brigaud T (1992) New and efficient routes to norstatine and its analogs with high enantiomeric purity by β-lactam synthon method. Tetrahedron Lett 33:5739–5742

    Google Scholar 

  62. Ojima I (1995) Asymmetric syntheses by means of β-lactam synthon method. In: Hassner A (ed) Advances in asymmetric synthesis. JAI Press, Greenwich, pp 95–146

    Chapter  Google Scholar 

  63. Ojima I, Slater JS, Kuduk SD, Takeuchi CS, Gimi RH et al (1997) Syntheses and structure-activity relationships of taxoids derived from 14β-hydroxy-10-deacetylbaccatin III. J Med Chem 40:267–278

    Article  CAS  Google Scholar 

  64. Palomo C, Aizpurua JM, Gracenea JJ (1999) Diastereoselective conjugate reduction and enolate trapping with glyoxylate imines. A concise approach to β-lactams that involves a ternary combination of components. J Org Chem 64:1693–1698

    Article  CAS  Google Scholar 

  65. Alcaide B, Aly M, Rodriguez C, Rodriguez-Vicente A (2000) Base-promoted isomerization of cis-4-formyl-2-azetidinones: chemoselective C4-epimerization vs rearrangement to cyclic enaminones. J Org Chem 65:3453–3459

    Article  CAS  Google Scholar 

  66. Banfi L, Guanti G, Rasparini M (2003) Intramolecular opening of β-lactams with amines as a strategy toward enzymatically or photochemically triggered activation of lactenediyne prodrugs. Eur J Org Chem 2003:1319–1336

    Article  Google Scholar 

  67. Romo D, Rzasa RM, Shea HA, Park K, Langenhan JM et al (1998) Total synthesis and immunosuppressive activity of (−)-pateamine A and related compounds: implementation of a β-lactam-based macrocyclization. J Am Chem Soc 120:12237–12254

    Article  CAS  Google Scholar 

  68. Del Buttero P, Molteni G, Roncoroni M (2006) Reductive ring opening of 2-azetidinones promoted by sodium borohydride. Tetrahedron Lett 47:2209–2211

    Article  CAS  Google Scholar 

  69. Ojima I, Wang H, Wang T, Ng EW (1998) New approaches to the asymmetric synthesis of dipeptide isosteres via β-lactam synthon method. Tetrahedron Lett 39:923–926

    Article  CAS  Google Scholar 

  70. Ojima I, Ng EW, Sun CM (1995) Novel route to hydroxyl(keto)ethylene dipeptide isosteres through the reaction of N-t-Boc-β-lactams with enolates. Tetrahedron Lett 36:4547–4550

    Article  CAS  Google Scholar 

  71. Bose AK, Banik BK, Mathur C, Wagle DR, Manhas MS (2000) Polyhydroxy amino acid derivatives via β-lactams using enantiospecific approaches and microwave techniques. Tetrahedron 56:5603–5619

    Article  CAS  Google Scholar 

  72. Van Brabandt W, Dejaegher Y, Van Landeghem R, De Kimpe N (2006) Reduction of 4-(haloalkyl)azetidin-2-ones with LiAlH4 as a powerful method for the synthesis of stereodefined aziridines and azetidines. Org Lett 8:1101–1104

    Article  CAS  Google Scholar 

  73. Vincent G, Williams RM (2007) Asymmetric total synthesis of (−)-cribrostatin 4 (renieramycin H). Angew Chem Int Ed 46:1517–1520

    Article  CAS  Google Scholar 

  74. Alajarin M, Sanchez-Andrada P (2001) On the mechanism of conversion of N-acyl-4-acyloxy-β-lactams into 2-substituted 1,3-oxazin-6-ones. Can a low-barrier transition state be antiaromatic? J Org Chem 66:8470–8477

    Article  CAS  Google Scholar 

  75. Ojima I, Zhao M, Yamato T, Nakahashi K, Abe R (1991) Azetidines and bisazetidines. Their synthesis and use as the key intermediates to enantiomerically pure diamines, amino alcohols, and polyamines. J Org Chem 56:5263–5277

    Article  CAS  Google Scholar 

  76. Ojima I, Shimizu N (1986) Extremely stereoselective and stereospecific reductive cleavage of β-lactams: a highly efficient route to labeled homochiral peptides. J Am Chem Soc 108:3100–3102

    Article  CAS  Google Scholar 

  77. Ojima I, Chen H-JC (1987) Novel and effective routes to optically pure amino acids, dipeptides, and their derivatives via β-lactams obtained through asymmetric cycloaddition. J Chem Soc Chem Commun 1987:625–626

    Article  Google Scholar 

  78. Ojima I, Chen HJ, Qiu X (1988) New approaches to the asymmetric synthesis of non-proteinogenic α-amino acids and dipeptides through chiral β-lactam intermediates. Tetrahedron 44:5307–5318

    Article  CAS  Google Scholar 

  79. Hatanaka N, Abe R, Ojima I (1982) Synthesis of optically pure enkephalin analog, [D-Ala2, Leu5-ol] enkephalin, using chiral β-lactams as synthetic intermediate. Chem Lett 11:445–448

    Article  Google Scholar 

  80. Van Brabandt W, Van Landeghem R, De Kimpe N (2006) Ring transformation of 2-(haloalkyl)azetidines into 3,4-disubstituted pyrrolidines and piperidines. Org Lett 8:1105–1108

    Article  CAS  Google Scholar 

  81. Mollet K, Broeckx L, D'hooghe M, De Kimpe N (2011) Synthesis of stereodefined 3,4-disubstituted piperidines through rearrangement of 2-(2-bromo-1,1-dimethylethyl)azetidines. J Org Chem 76:8364–8375

    Google Scholar 

  82. Dejaegher Y, Mangelinckx S, De Kimpe N (2002) Rearrangement of 2-aryl-3,3-dichloroazetidines: intermediacy of 2-azetines. J Org Chem 67:2075–2081

    Article  CAS  Google Scholar 

  83. Alcaide B, Almendros P, Pardo M, Rodriguez-Ranera C, Rodriguez-Vicente A (2003) Lewis acid-promoted intermolecular carbonyl-ene reaction of enantiopure 4-oxoazetidine-2-carbaldehydes. Rapid entry to novel fused polycyclic β-lactams. J Org Chem 68:3106–3111

    Article  CAS  Google Scholar 

  84. Alcaide B, Almendros P, Cabrero G, Ruiz M (2005) Organocatalytic ring expansion of β-lactams to γ-lactams through a novel N1–C4 bond cleavage. Direct synthesis of enantiopure succinimide derivatives. Org Lett 7:3981–3984

    Article  CAS  Google Scholar 

  85. Cabell LA, McMurray JS (2002) Two-carbon ring expansion of β-lactams via N(1)---C(4) cleavage reactions. Tetrahedron Lett 43:2491–2493

    Article  CAS  Google Scholar 

  86. Mandal PK, Cabell LA, McMurray JS (2005) The synthesis of ‘tyrosyl’ peptidomimetics by acid-catalyzed N(1)–C(4) ring opening of 4-(4′-hydroxyphenyl)-azetidine-2-ones. Tetrahedron Lett 46:3715–3718

    Article  CAS  Google Scholar 

  87. Palomo C, Aizpurua JM, Ganboa I, Oiardide M (1999) From β-lactams to α- and β-amino acid derived peptides. Amino Acids 16:321–343

    Article  CAS  Google Scholar 

  88. Paquette LA, Behrens C (1997) A ring-expansion route to analogues of dideoxyhydantocidin. Heterocycles 46:31–35

    Article  CAS  Google Scholar 

  89. Cossio F, Lopez C, Oiarbide M, Palomo C, Aparicio D et al (1988) Synthetic utility of azetidin-2,3-diones: a new approach to 3-hydroxyethyl-β-lactams and α-amino acid derivatives. Tetrahedron Lett 29:3133–3136

    Article  CAS  Google Scholar 

  90. Palomo C, Aizpurua JM, Cuevas C, Urchegui R, Linden A (1996) Generation of threonine and azathreonine N-carboxy anhydrides from α-hydroxy β-lactams promoted by 2,2,6,6-tetramethylpiperidinyl-l-oxyl (TEMPO) in combination with sodium hypochlorite. J Org Chem 61:4400–4404

    Article  CAS  Google Scholar 

  91. Durham T, Miller M (2003) Enantioselective synthesis of α-amino acids from n-tosyloxy β-lactams derived from β-keto esters. J Org Chem 68:27–34

    Article  CAS  Google Scholar 

  92. Alcaide B, Almendros P, Aragoncillo C (2002) A novel one-step approach for the preparation of α-amino acids, α-amino amides, and dipeptides from azetidine-2,3-diones. Chem Eur J 8:3646–3652

    Article  CAS  Google Scholar 

  93. Alcaide B, Martin-Cantalejo Y, Rodriguez-Lopez J, Sierra M (1993) New reactivity patterns of the l-lactam ring: tandem C3-C4 bond breakage-rearrangement of 4-acyl- or 4-imino-3,3-dimethoxy-2-azetidinones promoted by stannous chloride (SnCl2-2H2O). J Org Chem 58:4767–4770

    Article  CAS  Google Scholar 

  94. Alcaide B, Almendros P, Cabrero G, Callejo R, Ruiz M et al (2010) Ring expansion versus cyclization in 4-oxoazetidine-2-carbaldehydes catalyzed by molecular iodine: experimental and theoretical study in concert. Adv Synth Catal 352:1688–1700

    Article  CAS  Google Scholar 

  95. Saito T, Kobayashi S, Ohgaki M, Wada M, Nagahiro C (2002) Diene-transmissive hetero Diels–Alder reaction of cross-conjugated azatrienes with ketenes: a novel and efficient, stereo-controlled synthetic method for hexahydroquinolinones. Tetrahedron Lett 43:2627–2631

    Article  CAS  Google Scholar 

  96. Almendros P, Aragoncillo C, Cabrero G, Callejo R, Carrascosa R et al (2010) Thermal Cope reaction of 2-azetidinone-tethered 1,5-dienes: synthesis of tetrahydroazocinones. Arkivoc 2010:74–92

    Article  Google Scholar 

  97. Alcaide B, Rodriguez-Campos IM, Rodriguez-Lopez J, Rodriguez-Vicente A (1999) Stereoselective synthesis of fused bicyclic β-lactams through radical cyclization of enyne-2-azetidinones. J Org Chem 64:5377–5387

    Article  CAS  Google Scholar 

  98. Souers AJ, Ellman JA (2001) β-Turn mimetic library synthesis: scaffolds and applications. Tetrahedron 57:7431–7448

    Article  CAS  Google Scholar 

  99. Palomo C, Aizpurua JM, Benito A, Miranda JI, Fratila RM et al (2003) Development of a new family of conformationally restricted peptides as potent nucleators of β-turns. design, synthesis, structure, and biological evaluation of a β-lactam peptide analogue of melanostatin. J Am Chem Soc 125:16243–16260

    Article  CAS  Google Scholar 

  100. Palomo C, Aizpurua JM, Ganboa I, Benito A, Cuerdo L et al (2004) Synthesis of type II β-turn surrogate dipeptides based on syn-α-amino-α, β-dialkyl-β-lactams. Org Lett 6:4443–4446

    Article  CAS  Google Scholar 

  101. Palomo C, Aizpurua JM, Balentova E, Jimenez A, Oyarbide J et al (2007) Synthesis of β-lactam scaffolds for ditopic peptidomimetics. Org Lett 9:101–104

    Article  CAS  Google Scholar 

  102. Jasko’lski M, Tomasselli AG, Sawyer TK, Staples DG, Heinrikson RL et al (1991) Synthesis and biological evaluation of a series of HIV-1 protease inhibitors. Biochemistry 30:1600–1609

    Article  Google Scholar 

  103. Burgess K (2001) Solid-phase syntheses of β-turn analogues to mimic or disrupt protein-protein interactions. Acc Chem Res 34:826–835

    Article  CAS  Google Scholar 

  104. Arnold U, Hinderaker MP, Nilsson BL, Huck BR, Gellman SH et al (2002) A reverse turn structure induced by a D, L-alpha-aminoxy acid dimer. J Am Chem Soc 124:8522–8523

    Article  CAS  Google Scholar 

  105. Aizpurua JM, Ganboa JI, Palomo C, Loinaz I, Oyarbide J et al (2011) Cyclic RGD b-lactam peptidomimetics induce differential gene expression in human endothelial cells. Chembiochem 12:401–405

    Article  CAS  Google Scholar 

  106. Freidinger RM, Veber DF, Perlow DS, Brooks JR, Saperstein R (1980) Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 210:656–658

    Article  CAS  Google Scholar 

  107. Freidinger RM, Perlow DS, Veber DF (1982) Protected lactam-bridged dipeptides for use as conformational constraints in peptides. J Org Chem 47:104–109

    Article  CAS  Google Scholar 

  108. Freidinger RM (1985) Synthesis of γ-lactam-constrained tryptophyllysine derivatives. J Org Chem 50:3631–3633

    Article  CAS  Google Scholar 

  109. Jung M (1985) In: Barrett G (ed) Chemistry and biochemistry of amino acids. Chapman and Hall, New York

    Google Scholar 

  110. Ojima I, Chen HJ, Nakahashi K (1988) Asymmetric synthesis with chiral β-lactams. α-substituted aromatic α-amino acids and their derivatives through highly stereoselective alkylations. J Am Chem Soc 110:278–281

    Article  CAS  Google Scholar 

  111. Ojima I, Komata T, Qiu X (1990) Asymmetric alkylations of a phenylalanylglycinate equivalent. Novel route to dipeptides bearing α-alkyl-α-amino acid residues. J Am Chem Soc 112:110–114

    Article  Google Scholar 

  112. Thaisrivongs S, Pals DT, Kroll LT, Turner SR, Han FS (1987) Renin inhibitors. Design of angiotensinogen transition-state analogues containing novel. (2R,3R,4R,5S)-5-amino-3,4-dihydroxy-2-isopropyl-7-methyloctanoic acid. J Med Chem 30:976–982

    Article  CAS  Google Scholar 

  113. Huff JR (1991) HIV protease: a novel chemotherapeutic target for AIDS. J Med Chem 34:2305–2314

    Article  CAS  Google Scholar 

  114. Okino TM, Matsuda H, Murakami M, Yamaguchi K (1993) Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett 34:501–504

    Article  CAS  Google Scholar 

  115. Rowinsky EK (1997) The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 48:353–374

    Article  CAS  Google Scholar 

  116. Kingston DGI (2009) Tubulin-interactive natural products as anticancer agents. J Nat Prod 72:507–515

    Article  CAS  Google Scholar 

  117. Ojima I, Sun CM, Park YH (1994) New and efficient coupling method for the synthesis of peptides bearing the norstatine residue and their analogs. J Org Chem 59:1249–1250

    Article  CAS  Google Scholar 

  118. Ojima I, Wang T, Ng EW (1998) New approaches to the asymmetric synthesis of dipeptide isosteres via β-lactam synthon method. Tetrahedron Lett 39:923–926

    Article  CAS  Google Scholar 

  119. Palomo C, Aizpurua JM, Cuevas C (1994) A route to dipeptides containing β-amino-α-hydroxy acid fragments by coupling of N-boc-β-lactams with α-amino esters. Application to the synthesis of (−)-bestatin. J Chem Soc Chem Commun 1994:1957–1958

    Article  Google Scholar 

  120. Kukhar VP, Soloshonok VA (1994) Fluorine containing amino acids: synthesis and properties. Wiley, Chichester

    Google Scholar 

  121. Ojima I (1996) Biomedical frontiers of fluorine chemistry. In: McCarthy J, Welch J (eds) ACS Symposium Series 639, Washington DC

    Google Scholar 

  122. Ojima I, Kuznetsova LV, Sun L (2007) Organofluorine chemistry at the biomedical interface – a case study on fluoro-taxoid anticancer agents. In: Soloshonok V, Mikami K, Yamazaki T, Welch JT, Honek J (eds) ACS Sym Ser 949: Current fluoroorganic chemistry new synthetic directions, technologies, materials and biological applications. American Chemical Society/Oxford University Press, Washington, DC, pp 288–304

    Google Scholar 

  123. Ojima I, Wang T, Delaloge F (1998) Extremely stereoselective alkylation of 3-siloxy-β-lactams and its applications to the asymmetric syntheses of novel 2-alkylisoserines, their dipeptides, and taxoids. Tetrahedron Lett 39:3663–3666

    Article  CAS  Google Scholar 

  124. Suffness M (1995) Taxol: science and applications. CRC, New York

    Google Scholar 

  125. Guénard D, Guéritte-Vogelein F, Potier P (1993) Taxol and taxotere: discovery, chemistry, and structure-activity relationships. Acc Chem Res 26:160–167

    Article  Google Scholar 

  126. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  Google Scholar 

  127. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565

    Article  CAS  Google Scholar 

  128. Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem: Anti-Cancer Agents 2:1–17

    Article  CAS  Google Scholar 

  129. Jordan M, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  CAS  Google Scholar 

  130. Denis J-N, Greene AE, Guénard D, Guéritte-Voegelein F, Mangatal L et al (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919

    Article  CAS  Google Scholar 

  131. Holton RA, Biediger RJ, Boatman PD (1995) Semisynthesis of taxol and taxotere. In: Suffness M (ed) Taxol®: science and applications. CRC, New York, pp 97–121

    Google Scholar 

  132. Lin S, Geng X, Qu C, Tynebor R, Gallagher D et al (2000) Synthesis of highly potent second-generation taxoids through effective kinetic resolution coupling of racemic β-lactams with baccatins. Chirality 12:431–441

    Article  CAS  Google Scholar 

  133. Holton RA, Kim H-B, Somoza C, Liang F, Biediger RJ et al (1994) First total synthesis of taxol. 2. completion of the C and D rings. J Am Chem Soc 116:1599–1600

    Article  CAS  Google Scholar 

  134. Nicolaou KC, Ueno H, Liu J-J, Nantermet PG, Yang Z et al (1995) Total synthesis of taxol. 4. The final stages and completion of the synthesis. J Am Chem Soc 117:653–659

    Article  CAS  Google Scholar 

  135. Danishefsky S, Masters J, Young W, Link J, Snyder L et al (1996) Total synthesis of baccatin III and taxol. J Am Chem Soc 118:2843–2859

    Article  CAS  Google Scholar 

  136. Wender PA, Badham NF, Conway SP, Floreancig PE, Glass TE et al (1997) The pinene path to taxanes. 6. A concise stereocontrolled synthesis of taxol. J Am Chem Soc 119:2757–2758

    Article  CAS  Google Scholar 

  137. Ojima I, Sun CM, Zucco M, Park YH, Duclos O et al (1993) A highly efficient route to taxotère by the β-lactam synthon method. Tetrahedron Lett 34:4149–4152

    Article  CAS  Google Scholar 

  138. Georg GI, Boge TC, Cheruvallath ZS, Clowers JS, Harriman GCB et al (1995) The medicinal chemistry of taxol. In: Suffness M (ed) Taxol®: science and applications. CRC, New York, pp 317–375

    Google Scholar 

  139. Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud P-Y et al (1996) Syntheses and structure-activity relationships of the second generation antitumor taxoids. Exceptional activity against drug-resistant cancer cells. J Med Chem 39:3889–3896

    Article  CAS  Google Scholar 

  140. Ojima I, Chen J, Sun L, Borella CP, Wang T et al (2008) Design, synthesis and biological evaluation of new generation taxoids. J Med Chem 51:3203–3221

    Article  CAS  Google Scholar 

  141. Ojima I, Das M (2009) Recent advances in the chemistry and biology of new generation taxoids. J Nat Prod 72:554–565

    Article  CAS  Google Scholar 

  142. Appendino G, Gariboldi P, Gabetta B, Pace R, Bombardelli E et al (1992) 14β-Hydroxy-10-deacetylbaccatin III, a New Taxane from Himalayan Yew (Taxus Wallichiana Zucc.). J Chem Soc, Perkins Trans 1 2925–2929

    Google Scholar 

  143. (a) Geney, R., Sun, L., Pera, P., Bernacki, R.J., Xia, S., Horwitz, S.B., Simmerling, C.L., Ojima, I. (2005). Use of the tubulin-bound paclitaxel conformation for structure-based rational drug design. Chem & Biol 12, 339-348 (b) Sun L, Geng X, Geney R, Li Y, Li Z et al (2008) Design, synthesis and biological evaluation of novel C14-C3’BzN–linked macrocyclic taxoids. J Org Chem 73:9584–9593 (c) Ojima, I., Lin, S., Inoue, T., Miller, M.L., Borella, C.P., Geng, X., Walsh, J.J. (2000) Macrocycle Formation by Ring-Closing Metathesis. Application to the Syntheses of Novel Macrocyclic Taxoids. J Am Chem Soc 122: 5343–5353 (d) Geng, X., Miller, M., Lin, S., Ojima, I. (2003) Synthesis of Novel C2-C3′ N-Linked Macrocyclic Taxoids by Means of Highly Regioselective Heck Macrocyclization. Org Lett 5: 3733–3736

    Article  CAS  Google Scholar 

  144. Sun L, Simmerling C, Ojima I (2009) Recent advances in the study of the bioactive conformation of taxol. ChemMedChem 4:719–731

    Article  CAS  Google Scholar 

  145. Eggen MJ, Georg GI (2002) The cryptophycins: their synthesis and anticancer activity. Med Res Rev 22:85–101

    Article  CAS  Google Scholar 

  146. Eggen M, Nair S, Georg G (2001) Rapid entry into the cryptophycin core via an acyl-β-lactam macrolactonization: total synthesis of cryptophycin-24. Org Lett 3:1813–1815

    Article  CAS  Google Scholar 

  147. Vidya R, Eggen MJ, Nair SK, Georg GI, Himes RH (2003) Synthesis of cryptophycins via an N-acyl-β-lactam macrolactonization. J Org Chem 68:9687–9693

    Article  CAS  Google Scholar 

  148. Keller-Schierlein K, Roncari G (1964) Stoffwechselprodukte von Mikroorganismen 46. Mitteilung Die Konstitution des Lankamycins. Helv Chim Acta 47:78–103

    Article  CAS  Google Scholar 

  149. Sakamoto JMJ, Kondo S, Yumoto H, Arishima M (1962) Bundlins A and B, two antibiotics produced by Stereptomyces grieseofuscus nov. sp. J Antibiot Ser A 15:98–102

    CAS  Google Scholar 

  150. Harada S, Higashide E, Fugono T, Kishi T (1969) Isolation and structures of T-2636 antibiotics. Tetrahedron Lett 27:2239–2244

    Article  Google Scholar 

  151. Ootsu K, Matsumoto T, Harada S, Kishi T (1975) Antitumor and immunosuppressive activities of lankacidin-group antibiotics: structure-activity relationships. Cancer Chemother Rep, Part 1 59:919–928

    CAS  Google Scholar 

  152. Kende AS, Liu K, Kaldor I, Dorey G, Koch K (1995) Total synthesis of the macrolide antitumor antibiotic lankacidin C. J Am Chem Soc 117:8258–8270

    Article  CAS  Google Scholar 

  153. Watt JM, Gerdina M (1962) The medicinal and poisonous plants of southern and eastern Africa. E. & S. Livingstone Ltd., Edinburgh

    Google Scholar 

  154. Cragg G, Kingston D, Newman D (2005) Anticancer agents from natural products. CRC, Boca Raton

    Google Scholar 

  155. Cooney M, Ortiz J, Bukowski R, Remick S (2005) Novel vascular targeting/disrupting agents:combretastatin A4 phosphate and related compounds. Curr Oncol Rep 7:90–95

    Article  CAS  Google Scholar 

  156. Young SL, Chaplin DJ (2004) Combretastatin A4 phosphate: background and current clinical status. Expert Opin Invest Drugs 13:1171–1182

    Article  CAS  Google Scholar 

  157. O'Boyle N, Carr M, Greene L, Bergin O, Nathwani S et al (2010) Synthesis and evaluation of azetidinone analogues of combretastatin A-4 as tubulin targeting agents. J Med Chem 53:8569–8584

    Article  CAS  Google Scholar 

  158. Burnett D (2004) β-Lactam cholesterol absorption inhibitors. Curr Med Chem 11:1873–1887

    Article  CAS  Google Scholar 

  159. Tiruvettipuram KT, Fu X, Tann CH, McAllister TL, Chiu JS et al (2001) Process for the synthesis of azetidinones (Schering Corporation)

    Google Scholar 

  160. Wu G, Wong YS, Chen X, Ding Z (1999) A novel one-step diastereo- and enantioselective formation of trans-azetidinones and its application to the total synthesis of cholesterol absorption inhibitors. J Org Chem 64:3714–3718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwao Ojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ojima, I., Zuniga, E.S., Seitz, J.D. (2012). Advances in the Use of Enantiopure β-Lactams for the Synthesis of Biologically Active Compounds of Medicinal Interests. In: Banik, B. (eds) β-Lactams: Unique Structures of Distinction for Novel Molecules. Topics in Heterocyclic Chemistry, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2012_86

Download citation

Publish with us

Policies and ethics