Skip to main content

Theoretical Approaches to the Dynamics of Transposable Elements in Genomes, Populations, and Species

  • Chapter
  • First Online:
Book cover Transposons and the Dynamic Genome

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 4))

Abstract

Transposable elements are major components of both prokaryotic and eukaryotic genomes. They are generally considered as “selfish DNA” sequences able to invade the chromosomes of a species in a parasitic way, leading to a plethora of mutations such as insertions, deletions, inversions, translocations and complex rearrangements. They are frequently deleterious, but sometimes provide a source of genetic diversity. Numerous population genetics models have been proposed to describe more precisely the dynamics of these complex genomic components, and despite a wide diversity among transposable elements and their hosts, the colonization process appears to be roughly predictable. In this paper, we aim to describe and comment on some of the theoretical studies, and attempt to define the “life cycle” of these genomic nomads. We further raise some new issues about the impact of moving sequences in the evolution and the structure of genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen M, Templeton T, Enomoto S, Abrahante J, Zhu G, Lancto C, Deng M, Liu C, Widmer G, Tzipori S et al. (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  PubMed  CAS  Google Scholar 

  2. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751

    Article  PubMed  CAS  Google Scholar 

  3. Andrews JD, Gloor GB (1995) A role for the KP Leucine Zipper in regulating P element transposition in Drosophila melanogaster. Genetics 135:81–95

    Google Scholar 

  4. Anxolabéhère D, Benes H, Nouaud D, Périquet G (1987) Evolutionary steps and transposable elements in Drosophila melanogaster: the missing RP type obtained by genetic transformation. Evolution 4:846–853

    Article  Google Scholar 

  5. Anxolabéhère D, Kidwell MG, Périquet G (1988) Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Mol Biol Evol 5:252–269

    PubMed  Google Scholar 

  6. Aravind L (2000) The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 25:421–423

    Article  PubMed  CAS  Google Scholar 

  7. Arkhipova I, Meselson M (2000) Transposable elements in sexual and anciant asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  PubMed  CAS  Google Scholar 

  8. Arkhipova I, Meselson M (2005) Deleterious transposable elements and the extinction of asexuals. Bioessays 27:76–85

    Article  PubMed  CAS  Google Scholar 

  9. Badge RM, Brookfield JFY (1997) The role of host factors in the population dynamics of selfish transposable elements. J Theor Biol 187:261–271

    Article  PubMed  CAS  Google Scholar 

  10. Bestor T (2003) Cytosine methylation mediates sexual conflict. Trends Genet 19:185–190

    Article  PubMed  CAS  Google Scholar 

  11. Bestor TH (1999) Sex brings transposons and genomes into conflict. Genetica 107:289–295

    Article  PubMed  CAS  Google Scholar 

  12. Biémont C (1994) Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M′strain of Drosophila melanogaster. J Mol Evol 39:466–472

    Article  PubMed  Google Scholar 

  13. Biémont C, Nardon C, Deceliere G, Lepetit D, Loevenbruck C, Vieira C (2003) Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans. Evolution 57:159–167

    PubMed  Google Scholar 

  14. Birchler JA, Pal-Bhadra M, Bhadra U (1999) Less from more: cosuppression of transposable elements. Nature Genet 21:148–149

    Article  PubMed  CAS  Google Scholar 

  15. Bird AP (1997) Does DNA methylation control transposition of selfish elements in the germline? Trends Genet 13:469–470

    Article  PubMed  CAS  Google Scholar 

  16. Boissinot S, Chevret P, Furano A (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928

    PubMed  CAS  Google Scholar 

  17. Bonnivard E, Bazin C, Denis B, Higuet D (2000) A scenario for the hobo transposable element invasion, deduced from the structure of natural populations of Drosophila melanogaster using tandem TPE repeats. Genet Res 75:13–23

    Article  PubMed  CAS  Google Scholar 

  18. Bregliano JC, Kidwell MG (1983) Mobile Genetic Elements. chap. Hybrid Dysgenesis Determinants, p 363. Academic Press, inc.

    Google Scholar 

  19. Brookfield J (1982) Interspersed repetitive DNA sequences are unlikely to be parasitic. J Theor Biol 94:281–299

    Article  PubMed  CAS  Google Scholar 

  20. Brookfield JFY (1995) Mobile genetics elements. chap. Transposable elements as selfish DNA. Oxford University Press, New York, p 131–153

    Google Scholar 

  21. Brookfield J (2003) Mobile DNAs: the poacher turned gamekeeper. Curr Biol 13:R846–R847

    Article  PubMed  CAS  Google Scholar 

  22. Brookfield JFY, Badge RM (1997) Population genetics models of transposable elements. Genetica 52:281–294

    Article  Google Scholar 

  23. Brosius J (2005) Disparity, adaptation, exaptation, bookkeeping, and the contingency at the genome level. Paleobiology 31:1–16

    Article  Google Scholar 

  24. Bucheton A (1990) I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet 6:16–21

    Article  PubMed  CAS  Google Scholar 

  25. Burke WB, Malik HS, Lathe WC, Eickbush TH (1998) Are retrotransposons long-term hitchhikers? Nature 392:141–142

    Article  PubMed  CAS  Google Scholar 

  26. Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G–C to A–T mutations in Neurospora crassa. Science 244:1571–1575

    Article  PubMed  CAS  Google Scholar 

  27. Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106

    Article  PubMed  CAS  Google Scholar 

  28. Carlton J, Angiuoli S, Suh B, Kooij T, Pertea M, Silva J, Ermolaeva M, Allen J, Selengut J, Koo H et al. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519

    Article  PubMed  CAS  Google Scholar 

  29. Charlesworth B (1991) Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet Res 57:127–134

    Article  PubMed  CAS  Google Scholar 

  30. Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68:131–149

    Article  PubMed  CAS  Google Scholar 

  31. Charlesworth B, Charlesworth D (1983) The population dynamics of transposable elements. Genet Res 42:1–27

    Article  Google Scholar 

  32. Charlesworth B, Langley CH (1986) The evolution of self-regulated transposition of transposable elements. Genetics 112:359–383

    PubMed  CAS  Google Scholar 

  33. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  34. Coen D, Lemaitre B, Delattre M, Quesneville H, Ronsseray S, Simonelig M, Higuet D, Lehmann M, Montchamp C, Nouaud D (1994) Drosophila P element: transposition, regulation and evolution. Genetica 93:61–78

    Article  PubMed  CAS  Google Scholar 

  35. Corish P, Black D, Featherston D, Merriam J, Dover G (1996) Natural repressors of P-induced hybrid dysgenesis in Drosophila melanogaster: a model for repressor evolution. Genet Res 67:109–121

    Article  PubMed  CAS  Google Scholar 

  36. Davis C, Wurdack K (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    Article  PubMed  CAS  Google Scholar 

  37. Deceliere G, Charles S, Biémont C (2005) The dynamics of transposable elements in structured populations. Genetics 169:467–474

    Article  PubMed  CAS  Google Scholar 

  38. Doolittle W, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  39. Doolittle WF, Kirkwood TBL, Dempster MAH (1984) Selfish DNA with self-restraint. Nature 307:501–502

    Article  PubMed  CAS  Google Scholar 

  40. Eanes WF, Wesley C, Hey J, Houle D (1988) The fitness consequences of P element insertion in Drosophila melanogaster. Genet Res 52:17–26

    Article  Google Scholar 

  41. Eggleston W, Johnson-Schlitz D, Engels W (1988) P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331:368–370

    Article  PubMed  CAS  Google Scholar 

  42. Engels WR (1989) Mobile DNA. chap. P elements in Drosophila melanogaster, p 437–484. American Society of Microbiology

    Google Scholar 

  43. Engels W (1997) Invasions of P elements. Genetics 145:11–15

    PubMed  CAS  Google Scholar 

  44. Feschotte C, Mouchès C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17:730–737

    PubMed  CAS  Google Scholar 

  45. Ganko E, Bhattacharjee V, Schliekelman P, McDonald J (2003) Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol Biol Evol 20:1925–1931

    Article  PubMed  CAS  Google Scholar 

  46. Ganko E, Fielman K, McDonald J (2001) Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res 11:2066–2074

    Article  PubMed  CAS  Google Scholar 

  47. Gerasimova TI, Mizrokhi LJ, Georgiev GP (1984) Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309:714–716

    Article  Google Scholar 

  48. Gould SJ (2002) The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, Mass

    Google Scholar 

  49. Gloor et al. (1993) Type I repressors of P element mobility. Genetics 135:81–95

    PubMed  CAS  Google Scholar 

  50. Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531

    PubMed  CAS  Google Scholar 

  51. Hood M, Katawczik M, Giraud T (2005) Repeat-induced point mutation and the population structure of transposable elements in microbotryum violaceum. Genetics 170:1081–1089

    Article  PubMed  CAS  Google Scholar 

  52. Holt R, Subramanian G, Halpern A, Sutton G, Charlab R, Nusskern D, Wincker P, Clark A, Ribeiro J, Wides R et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  53. Houle D, Nuzhdin SV (2004) Mutation accumulation and the effect of copia insertions in Drosophila melanogaster. Genet Res 83:7–18

    Article  PubMed  CAS  Google Scholar 

  54. Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110:426–440

    Article  PubMed  CAS  Google Scholar 

  55. Inouye S, Furuichi T, Dhundale A, Inouye M (1987) Molecular biology of RNA: new perspectives. chap. Stable branched RNA covalently linked to the 5′end of a single-stranded DNA of Myxobacteria, p 271–284. Academic Press, San Diego/London

    Google Scholar 

  56. Izsvak Z, Ivics Z (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9:147–156

    Article  PubMed  CAS  Google Scholar 

  57. Jackson M, Black D, Dover G (1988) Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120:1003–1013

    PubMed  CAS  Google Scholar 

  58. Jordan I, Rogozin I, Glazko G, Koonin E (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  59. Kaplan N, Darden T, Langley CH (1985) Evolution and extinction of transposable elements in mendelian populations. Genetics 109:459–480

    PubMed  CAS  Google Scholar 

  60. Katinka M, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P et al. (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  61. Kazazian H (2000) L1 retrotransposons shape the mammalian genome. Science 289:1152–1153

    Article  PubMed  CAS  Google Scholar 

  62. Kidwell M (1983) Evolution of hybrid dysgenesis determinants in Drosophila melano- gaster. Proc Natl Acad Sci USA 80:1655–1659

    Article  PubMed  CAS  Google Scholar 

  63. Kidwell MG (1992) Horizontal transfer. Curr Opin Genet Dev 2:868–873

    Article  PubMed  CAS  Google Scholar 

  64. Kidwell MG, Lisch DR (2001) Transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24

    PubMed  CAS  Google Scholar 

  65. Kurland C, Canback B, Berg O (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662

    Article  PubMed  CAS  Google Scholar 

  66. Labrador M, Corces VG (1997) Transposable element-host interactions: regulation of insertion and excision. Annu Rev Genet 31:381–404

    Article  PubMed  CAS  Google Scholar 

  67. Lampe D, Witherspoon D, Soto-Adames F, Robertson H (2003) Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20:554–562

    Article  PubMed  CAS  Google Scholar 

  68. Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235

    Article  PubMed  CAS  Google Scholar 

  69. Lankenau S, Corces VG, Lankenau DH (1994) The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase. Mol Cell Biol 14:1764–1775

    PubMed  CAS  Google Scholar 

  70. Lankenau DH, Gloor GB (1998) In vivo gap repair in Drosophila: a one-way street with many destinations. BioEssays 20:317–327

    Article  PubMed  CAS  Google Scholar 

  71. Le Rouzic A, Capy P (2005) The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169:1033–1043

    Article  PubMed  CAS  Google Scholar 

  72. Le Rouzic A, Deceliere G (2005) The models of population genetics of transposable elements. Genet Res 85:171–181

    Article  PubMed  CAS  Google Scholar 

  73. Leaver M (2001) A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271:203–214

    Article  PubMed  CAS  Google Scholar 

  74. Lemaitre B, Ronsseray S, Coen D (1993) Maternal repression of the P element promoter in the germline of Drosophila melanogaster: a model for the P cytotype. Genetics 135:149–160

    PubMed  CAS  Google Scholar 

  75. Lippmann Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering DNA and histone modification. PLoS Biol 1:420–428

    Article  Google Scholar 

  76. Mackay TFC, Lyman R, Jackson M (1992) Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics 130:315–332

    PubMed  CAS  Google Scholar 

  77. Mackay TFC (1985) Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111:351–374

    PubMed  CAS  Google Scholar 

  78. Marin L, Lehmann M, Nouaud D, Izaabel H, Anxolabehere D, Ronsseray S (2000) P-elem- ent repression in Drosophila melanogaster by a naturally occurring defective telomeric P copy. Genetics 155:1841–1854

    PubMed  CAS  Google Scholar 

  79. Martienssen R (1998) Transposons, DNA methylation and gene control. Trends Genet 14:263–264

    Article  PubMed  CAS  Google Scholar 

  80. Maside X, Assimacopoulos S, Charlesworth B (2000) Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet Res 75:275–284

    Article  PubMed  CAS  Google Scholar 

  81. Miller W, McDonald J, Nouaud D, Anxolabéhère D (1999) Molecular domestication – more than a sporadic episode in evolution. Genetica 107:197–207

    Article  PubMed  CAS  Google Scholar 

  82. Montchamp-Moreau C (1990) Dynamics of P-M hybrid dygenesis in P-transformed lines of Drosophila simulans. Evolution 44:194–203

    Article  Google Scholar 

  83. Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  PubMed  CAS  Google Scholar 

  84. Nuzhdin SV (1999) Sure facts, speculations, and open questions about evolution of transposable elements. Genetica 107:129–137

    Article  PubMed  CAS  Google Scholar 

  85. Nuzhdin SV, Mackay TFC (1995) The genomic rate of transposable element movement in Drosophila melanogaster. Mol Biol Evol 12:180–181

    PubMed  CAS  Google Scholar 

  86. Ohta T (1986) Population genetics of an expanding family of mobile genetic elements. Genetics 113:145–159

    PubMed  CAS  Google Scholar 

  87. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  88. Pardue ML, DeBaryshe P (2003) Retrotransposons provide an evolutionnary robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511

    Article  PubMed  CAS  Google Scholar 

  89. Petrov DA (2001) Evolution of genome size: new approches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  90. Petrov D, Hartl D (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila viridis species group. Mol Biol Evol 15:293–302

    PubMed  CAS  Google Scholar 

  91. Petrov D, Schutzman J, Hartl D, Lozovskaya E (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA 92:8050–8054

    Article  PubMed  CAS  Google Scholar 

  92. Quesneville H, Anxolabéhère D (1998) Dynamics of transposable elements in metapopulations: a model of P elements invasion in Drosophila. Theor Pop Biol 54:175–193

    Article  CAS  Google Scholar 

  93. Quesneville H, Anxolabéhère D (2001) Genetic algorithm-based model of evolutionnary dynamics of class II transposable elements. J Theor Biol 213:21–30

    Article  PubMed  CAS  Google Scholar 

  94. Quesneville H, Nouaud D, Anxolabéhère D (2003) Detection of new transposable element families in Drosophila melanogaster and Anopheles gambiae genomes. J Mol Evol 57 Suppl 1:S50–S59

    Google Scholar 

  95. Rio DC (1991) Regulation of Drosophila P element transposition. Trends Genet 7:282–287

    PubMed  CAS  Google Scholar 

  96. Roussigne M, Kossida S, Lavigne A, Clouaire T, Ecochard V, Glories A, Amalric F, Girard J (2003) The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci 28:66–69

    Article  PubMed  CAS  Google Scholar 

  97. San Miguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  Google Scholar 

  98. Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  99. Silva J, Loreto E, Clark J (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6:57–71

    PubMed  CAS  Google Scholar 

  100. Simmons M, Raymond J, Rasmusson K, Miller L, McLarnon C, Zunt J (1990) Repression of P element-mediated hybrid dysgenesis in Drosophila melanogaster. Genetics 124:663–676

    PubMed  CAS  Google Scholar 

  101. Snyder M, Doolittle W (1988) P elements in Drosophila: selection at many levels. Trends Genet 4:147–149

    Article  PubMed  CAS  Google Scholar 

  102. Suh D, Choi E, Yamazaki T, Harada K (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster. Mol Biol Evol 12:748–758

    PubMed  CAS  Google Scholar 

  103. Tsitrone A, Charles S, Biémont C (1999) Dynamics of transposable elements under the selection model. Genet Res 74:159–164

    Article  Google Scholar 

  104. Vieira C, Biémont C (2004) Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans. Genetica 120:115–123

    Article  PubMed  CAS  Google Scholar 

  105. Vieira C, Lepetit D, Dumont S, Biemont C (1999) Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol 16:1251–1255

    PubMed  CAS  Google Scholar 

  106. Vieira J, Vieira C, Hartl D, Lozovskaya E (1998) Factors contributing to the hybrid dysgenesis syndrome in Drosophila virilis. Genet Res 71:109–117

    Article  PubMed  CAS  Google Scholar 

  107. Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540

    Article  PubMed  CAS  Google Scholar 

  108. Weiner A (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350

    Article  PubMed  CAS  Google Scholar 

  109. Witherspoon D (1999) Selective constraints on P-element evolution. Mol Biol Evol 16:472–478

    PubMed  CAS  Google Scholar 

  110. Woodruff R, Thompson J Jr, Gu S (2004) Premeiotic clusters of mutation and the cost of natural selection. J Hered 95:277–283

    Article  PubMed  CAS  Google Scholar 

  111. Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  PubMed  CAS  Google Scholar 

  112. Xu P, Widmer G, Wang Y, Ozaki L, Alves J, Serrano M, Puiu D, Manque P, Akiyoshi D, Mackey A et al. (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  113. Xu T, Deng K (2002) Sex and retrotransposons: a new approach to the problem. J Theor Biol 218:259–260

    Article  PubMed  Google Scholar 

  114. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  115. Zeyl C, Bell G, Green DM (1996) Sex and spread of retrotransposon ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143:1567–1577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank D. Lankenau and two anonymous referees for their useful comments. The English text was reviewed by M. Eden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Capy .

Editor information

Dirk-Henner Lankenau Jean-Nicolas Volff

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Rouzic, A., Capy, P. (2006). Theoretical Approaches to the Dynamics of Transposable Elements in Genomes, Populations, and Species. In: Lankenau, DH., Volff, JN. (eds) Transposons and the Dynamic Genome. Genome Dynamics and Stability, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7050_017

Download citation

Publish with us

Policies and ethics