Skip to main content

NASCA Microscopy: Super-Resolution Mapping of Chemical Reaction Centers

  • Chapter
  • First Online:
Far-Field Optical Nanoscopy

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 14))

Abstract

Recently fluorescence microscopy has been introduced in the field of catalysis to study their dynamic molecular processes under in situ conditions with high spatial and temporal resolution. Because of the unique sensitivity down to the single molecule level, fluorescence microscopy allows to observe and localize chemical transformations with a subdiffraction-limited resolution. This chapter describes the use of fluorogenic probe molecules to visualize single chemical conversions using fluorescence microscopy. Special attention is paid to how visualization of single chemical conversions can yield super-resolution images beyond the diffraction limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BODIPY:

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene

GSDIM:

Ground-state depletion and single molecule return

LDH:

Layered double hydroxide

MRI:

Magnetic resonance imaging

NASCA:

Nanometer accuracy by stochastic chemical reactions

PALM:

Photo-activated localization microscopy

PET:

Photo-induced electron transfer

PSF:

Point-spread-function

STED:

Stimulated emission depletion microscopy

STORM:

Stochastic optical reconstruction microscopy

TIRF:

Total internal reflection fluorescence

References

  1. Niemantsverdriet JW (2007) Spectroscopy in catalysis: An introduction. 3rd, Completely Revised and Enlarged Edition edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Weckhuysen BM (2009) Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew Chem Int Edit 48(27):4910–4943

    Article  CAS  Google Scholar 

  3. Hulsken B, Van Hameren R, Gerritsen JW, Khoury T, Thordarson P, Crossley MJ, Rowan AE, Nolte RJM, Elemans J, Speller S (2007) Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nat Nanotechnol 2(5):285–289. doi:10.1038/nnano.2007.106

    Article  CAS  Google Scholar 

  4. de Smit E, Swart I, Creemer JF, Hoveling GH, Gilles MK, Tyliszczak T, Kooyman PJ, Zandbergen HW, Morin C, Weckhuysen BM, de Groot FMF (2008) Nanoscale chemical imaging of a working catalyst by scanning transmission x-ray microscopy. Nature 456(7219):222–225

    Article  Google Scholar 

  5. Urakawa A, Baiker A (2009) Space-resolved profiling relevant in heterogeneous catalysis. Top Catal 52(10):1312–1322. doi:10.1007/s11244-009-9312-3

    Article  CAS  Google Scholar 

  6. Bergwerff JA, Lysova AA, Alonso LE, Koptyug IV, Weckhuysen BM (2007) Probing the transport of paramagnetic complexes inside catalyst bodies in a quantitative manner by magnetic resonance imaging. Angew Chem Int Edit 46:7224–7227. doi:10.1002/anie.200701399

    Article  CAS  Google Scholar 

  7. Roeffaers MBJ, De Cremer G, Uji-i H, Muls B, Sels BF, Jacobs PA, De Schryver FC, De Vos DE, Hofkens J (2007) Single-molecule fluorescence spectroscopy in (bio)catalysis. P Natl Acad Sci USA 104(31):12603–12609

    Article  CAS  Google Scholar 

  8. Roeffaers MBJ, Hofkens J, De Cremer G, De Schryver FC, Jacobs PA, De Vos DE, Sels BF (2007) Fluorescence microscopy: Bridging the phase gap in catalysis. Catal Today 126(1–2):44–53

    Article  CAS  Google Scholar 

  9. De Cremer G, Sels BF, De Vos DE, Hofkens J, Roeffaers MBJ (2010) Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem Soc Rev 39(12):4703–4717

    Article  Google Scholar 

  10. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32. doi:10.1038/nmeth.1291

    Article  CAS  Google Scholar 

  11. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. doi:10.1126/science.1137395

    Article  CAS  Google Scholar 

  12. De Cremer G, Roeffaers MBJ, Bartholomeeusen E, Lin K, Dedecker P, Pescarmona PP, Jacobs PA, De Vos DE, Hofkens J, Sels BF (2010) High-resolution single-turnover mapping reveals intraparticle diffusion limitation in ti-mcm-41 catalyzed epoxidation. Angew Chem Int Edit 49(5):908–911

    Article  Google Scholar 

  13. Roeffaers MBJ, De Cremer G, Libeert J, Ameloot R, Dedecker P, Bons A-J, Bückins M, Martens J, Sels BF, De Vos DE, Hofkens J (2009) Super-resolution reactivity mapping of nanostructured catalyst particles. Angew Chem Int Edit 48(49):9285–9289

    Article  CAS  Google Scholar 

  14. Smiley RD, Hammes GG (2006) Single molecule studies of enzyme mechanisms. Chem Rev 106(8):3080–3094

    Article  CAS  Google Scholar 

  15. Tachikawa T, Majima T (2010) Single-molecule, single-particle fluorescence imaging of tio2-based photocatalytic reactions. Chem Soc Rev 39(12):4802–4819. doi:10.1039/b919698f

    Article  CAS  Google Scholar 

  16. Chen P, Zhou XC, Shen H, Andoy NM, Choudhary E, Han KS, Liu GK, Meng WL (2010) Single-molecule fluorescence imaging of nanocatalytic processes. Chem Soc Rev 39(12):4560–4570. doi:10.1039/b909052p

    Article  CAS  Google Scholar 

  17. Roeffaers MBJ, Sels BF, Uji-i H, De Schryver FC, Jacobs PA, De Vos DE, Hofkens J (2006) Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439(7076):572–575

    Article  CAS  Google Scholar 

  18. Xu WL, Shen H, Kim YJ, Zhou XC, Liu GK, Park J, Chen P (2009) Single-molecule electrocatalysis by single-walled carbon nanotubes. Nano Lett 9(12):3968–3973. doi:10.1021/nl900988f

    Article  CAS  Google Scholar 

  19. Tachikawa T, Wang N, Yamashita S, Cui SC, Majima T (2010) Design of a highly sensitive fluorescent probe for interfacial electron transfer on a tio2 surface. Angew Chem Int Edit 49(46):8593–8597. doi:10.1002/anie.201004976

    Article  CAS  Google Scholar 

  20. Ameloot R, Roeffaers MBJ, Baruah M, De Cremer G, Sels BF, De Vos DE, Hofkens J (2009) Towards direct monitoring of discrete events in a catalytic cycle at the single molecule level. Photochem Photobiol Sci 8(4):453–456

    Article  CAS  Google Scholar 

  21. Kiel A, Jarve A, Kovacs J, Mokhir A, Kramer R, Herten DP (2007) Single-molecule studies on individual metal complexes. Proc of SPIE 6,444

    Google Scholar 

  22. Kiel A, Kovacs J, Mokhir A, Kramer R, Herten DP (2007) Direct monitoring of formation and dissociation of individual metal complexes by single-molecule fluorescence spectroscopy. Angew Chem Int Edit 46(18):3363–3366

    Article  CAS  Google Scholar 

  23. Schwering M, Kiel A, Kurz A, Lymperopoulos K, Sprodefeld A, Kramer R, Herten DP (2011) Far-field nanoscopy with reversible chemical reactions. Angew Chem Int Edit 50(13):2940–2945. doi:10.1002/anie.201006013

    Article  CAS  Google Scholar 

  24. Roeffaers MBJ, Sels BF, Uji-i H, Blanpain B, L'Hoest P, Jacobs PA, De Schryver FC, Hofkens J, De Vos DE (2007) Space- and time-resolved visualization of acid catalysis in zsm-5 crystals by fluorescence microscopy. Angew Chem Int Edit 46(10):1706–1709

    Article  CAS  Google Scholar 

  25. Roeffaers MBJ, Ameloot R, Bons A-J, Mortier W, De Cremer G, de Kloe R, Hofkens J, De Vos DE, Sels BF (2008) Relating pore structure to activity at the subcrystal level for zsm-5: An electron backscattering diffraction and fluorescence microscopy study. J Am Chem Soc 130(41):13516–13517

    Article  CAS  Google Scholar 

  26. De Cremer G, Bartholomeeusen E, Pescarmona PP, Lin K, De Vos DE, Hofkens J, Roeffaers MBJ, Sels BF (2010) The influence of diffusion phenomena on catalysis: A study at the single particle level using fluorescence microscopy. Catal Today 157:236–242

    Article  Google Scholar 

  27. Pap EHW, Drummen GPC, Winter VJ, Kooij TWA, Rijken P, Wirtz KWA, Op den Kamp JAF, Hage WJ, Post JA (1999) Ratio-fluorescence microscopy of lipid oxidation in living cells using c11-bodipy581/591. FEBS Lett 453(3):278–282

    Article  CAS  Google Scholar 

  28. Roeffaers MBJ, Sels BF, De Schryver FC, Jacobs PA, Hofkens J, De Vos DE (2007) In situ filming of reactions inside individual zeolite crystals using fluorescence microscopy. Stud Surf Sci Catal 170:717–723

    Article  Google Scholar 

  29. Kox MHF, Stavitski E, Weckhuysen BM (2007) Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew Chem Int Edit 46(20):3652–3655

    Article  Google Scholar 

  30. Stavitski E, Kox MHF, Weckhuysen BM (2007) Revealing shape selectivity and catalytic activity trends within the pores of h-zsm-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem-Eur J 13(25):7057–7065

    Article  CAS  Google Scholar 

  31. Kox MHF, Domke KF, Day JPR, Rago G, Stavitski E, Bonn M, Weckhuysen BM (2009) Label-free chemical imaging of catalytic solids by coherent anti-stokes raman scattering and synchrotron-based infrared microscopy. Angew Chem Int Edit 48(47):8990–8994. doi:10.1002/anie.200904282

    Article  CAS  Google Scholar 

  32. Canham SM, Bass JY, Navarro O, Lim SG, Das N, Blum SA (2008) Toward the single-molecule investigation of organometallic reaction mechanisms: single-molecule imaging of fluorophore-tagged palladium(ii) complexes. Organometallics 27(10):2172–2175. doi:10.1021/om800228v

    Article  CAS  Google Scholar 

  33. Lim SG, Blum SA (2009) A general fluorescence resonance energy transfer (fret) method for observation and quantification of organometallic complexes under reaction conditions. Organometallics 28(16):4643–4645. doi:10.1021/om900629s

    Article  CAS  Google Scholar 

  34. Esfandiari NM, Wang Y, Bass JY, Cornell TP, Otte DAL, Cheng MH, Hemminger JC, McIntire TM, Mandelshtam VA, Blum SA (2010) Single-molecule imaging of platinum ligand exchange reaction reveals reactivity distribution. J Am Chem Soc 132(43):15167–15169. doi:10.1021/ja105517d

    Article  CAS  Google Scholar 

  35. Esfandiari NM, Wang Y, McIntire TM, Blum SA (2011) Real-time imaging of platinum-sulfur ligand exchange reactions at the single-molecule level via a general chemical technique. Organometallics 30(11):2901–2907. doi:10.1021/om100911n

    Article  CAS  Google Scholar 

  36. Sels BF, De Vos DE, Jacobs PA (2001) Hydrotalcite-like anionic clays in catalytic organic reactions. Catal Rev 43(4):443–488

    Article  CAS  Google Scholar 

  37. Tachikawa T, Yamashita S, Majima T (2011) Evidence for crystal-face-dependent tio2 photocatalysis from single-molecule imaging and kinetic analysis. J Am Chem Soc 133(18):7197–7204. doi:10.1021/ja201415j

    Article  CAS  Google Scholar 

  38. Wang N, Tachikawa T, Majima T (2011) Single-molecule, single-particle observation of size-dependent photocatalytic activity in au/tio2 nanocomposites. J Chem Sci 2(5):891–900. doi:10.1039/c0sc00648c

    Article  CAS  Google Scholar 

  39. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Edit 47(33):6172–6176. doi:10.1002/anie.200802376

    Article  CAS  Google Scholar 

  40. Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945. doi:10.1038/nmeth.1257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten B. J. Roeffaers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cremer, G.D., Sels, B.F., Vos, D.E.D., Hofkens, J., Roeffaers, M.B.J. (2011). NASCA Microscopy: Super-Resolution Mapping of Chemical Reaction Centers. In: Tinnefeld, P., Eggeling, C., Hell, S. (eds) Far-Field Optical Nanoscopy. Springer Series on Fluorescence, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2011_33

Download citation

Publish with us

Policies and ethics