Skip to main content

Principles of Directed Electronic Energy Transfer

  • Chapter
  • First Online:
Book cover Fluorescence of Supermolecules, Polymers, and Nanosystems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 4))

Abstract

On the optical irradiation of a complex absorptive medium, an ultrafast transfer of electronicenergy between chromophores or sites generally takes place, preceding any ensuing fluorescence. Such transferprocesses represent a redistribution of optically acquired energy and commonly lead to the indirectexcitation of other chromophore units. Consequently, electronic energy transfer is a major determinantof detail in the fluorescence spectrum of the system. Where a sequence of energy transfer steps canbe identified, the overall directionality of each sequence is important in determining any localizationof the electronic energy. It is therefore highly significant that it is possible to exercise directionalcontrol over energy transfer, not only through the operation of an intrinsic spectroscopic gradient, butalso by a variety of less well-known methods involving applied electrical or optical fields. Exploitationof the latter methods holds promise for advances in a wide range of technologies including opticalswitching and the production of energy harvesting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Förster T (1948) Ann Phys-Berlin 2:55

    Article  Google Scholar 

  2. Craig DP, Thirunamachandran T (1986) Accounts Chem Res 19:10

    Article  CAS  Google Scholar 

  3. Andrews DL, Sherborne BS (1987) J Chem Phys 86:4011

    Article  CAS  Google Scholar 

  4. Juzeliunas G, Andrews DL (2000) Adv Chem Phys 112:357

    Article  CAS  Google Scholar 

  5. Daniels GJ, Jenkins RD, Bradshaw DS, Andrews DL (2003) J Chem Phys 119:2264

    Article  CAS  Google Scholar 

  6. Salam A (2005) J Chem Phys 122:044112

    Article  CAS  Google Scholar 

  7. Salam A (2005) J Chem Phys 122:044113

    Article  CAS  Google Scholar 

  8. Dexter DL (1953) J Chem Phys 21:836

    Article  CAS  Google Scholar 

  9. Scholes GD, Ghiggino KP, Oliver AM, Paddon-Row MN (1993) J Am Chem Soc 115:4345

    Article  CAS  Google Scholar 

  10. Yeow EKL, Haines DJ, Ghiggino KP, Paddon-Row MN (1999) J Phys Chem A 103:6517

    Article  CAS  Google Scholar 

  11. Yeow EKL, Ghiggino KP (2000) J Phys Chem A 104:5825

    Article  CAS  Google Scholar 

  12. Smith TA, Lokan N, Cabral N, Davies SR, Paddon-Row MN, Ghiggino KP (2002) J Photochem Photobiol A 149:55

    Article  CAS  Google Scholar 

  13. Forde TS, Hanley QS (2005) Photochem Photobiol Sci 4:609

    Article  CAS  Google Scholar 

  14. Juzeliunas G, Andrews DL (1999) In: Andrews DL, Demidov AA (eds) Resonance energy transfer. Wiley, Chichester, p 65

    Google Scholar 

  15. Wieb van der Meer B (1999) In: Andrews DL, Demidov AA (eds) Resonance energy transfer. Wiley, Chichester, p 151

    Google Scholar 

  16. Andrews DL, Bittner AM (1993) J Lumin 55:231

    Article  CAS  Google Scholar 

  17. Allcock P, Jenkins RD, Andrews DL (2000) Phys Rev A 6102:023812

    Article  Google Scholar 

  18. Daniels GJ, Andrews DL (2002) J Chem Phys 117(E):6882

    Article  CAS  Google Scholar 

  19. Hu X, Schulten K (1998) Biophys J 75:683

    Article  CAS  Google Scholar 

  20. Sundström V, Pullerits T, van Grondelle R (1999) J Phys Chem B 103:2327

    Article  Google Scholar 

  21. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Science 302:1969

    Article  CAS  Google Scholar 

  22. Krueger BP, Scholes GD, Gould IR, Fleming GR (1999) Phys Chem Commun 8:1089

    Google Scholar 

  23. Katiliene Z, Katilius E, Uyeda GH, Williams JC, Woodbury NW (2004) J Phys Chem B 108:3863

    Article  CAS  Google Scholar 

  24. Hu X, Damjanovik A, Ritz T, Schulten K (1998) Proc Natl Acad Sci USA 95:5935

    Article  CAS  Google Scholar 

  25. Wu H-M, Rätsep M, Jankowiak R, Cogdell RJ, Small GJ (1998) J Phys Chem B 102:4023

    Article  CAS  Google Scholar 

  26. Jungas C, Ranck JL, Rigaud JL, Joliot P, Vermeglio A (1999) EMBO J 18:534

    Article  CAS  Google Scholar 

  27. Sener MK, Schulten K (2005) In: Andrews DL (ed) Energy harvesting materials. World Scientific, Singapore, p 1

    Chapter  Google Scholar 

  28. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Nature 434:625

    Article  CAS  Google Scholar 

  29. Bar-Haim A, Klafter J (1998) J Lumin 76–77:197

    Article  Google Scholar 

  30. Bar-Haim A, Klafter J (1998) J Phys Chem B 102:1662

    Article  CAS  Google Scholar 

  31. Tretiak S, Chernyak V, Mukamel S (1998) J Phys Chem B 102:3310

    Article  CAS  Google Scholar 

  32. Swallen SF, Shi ZY, Tan WH, Xu ZF, Moore JS, Kopelman R (1998) J Lumin 76–77:193

    Article  Google Scholar 

  33. Yeow EKL, Ghiggino KP, Reek JNH, Crossley MJ, Bosman AW, Schenning A, Meijer EW (2000) J Phys Chem B 104:2596

    Article  CAS  Google Scholar 

  34. Adronov A, Frechet JMJ (2000) Chem Commun, p 1701

    Google Scholar 

  35. Devadoss C, Bharathi P, Moore JS (1996) J Am Chem Soc 118:9635

    Article  CAS  Google Scholar 

  36. Shortreed MR, Swallen SF, Shi ZY, Tan WH, Xu ZF, Devadoss C, Moore JS, Kopelman R (1997) J Phys Chem B 101:6318

    Article  Google Scholar 

  37. Aulenta F, Hayes W, Rannard S (2003) Eur Polym J 39:1741

    Article  CAS  Google Scholar 

  38. Hahn U, Gorka M, Vögtle F, Vicinelli V, Ceroni P, Maestri M, Balzani V (2002) Angew Chem Int Edit 41:3595

    Article  CAS  Google Scholar 

  39. Würthner F, Sautter A (2003) Org Biomol Chem 1:240

    Article  Google Scholar 

  40. Van Patten PG, Shreve AP, Lindsey JS, Donohoe RJ (1998) J Phys Chem B 102:4209

    Article  Google Scholar 

  41. Kilså K, Kajanus J, Mårtensson J, Albinsson B (1999) J Phys Chem B 103:7329

    Article  Google Scholar 

  42. Brodard P, Matzinger S, Vauthey E, Mongin O, Papamicaël C, Gossauer A (1999) J Phys Chem A 103:5858

    Article  CAS  Google Scholar 

  43. Cho HS, Song NW, Kim YH, Jeoung SC, Hahn S, Kim D, Kim SK, Yoshida N, Osuka A (2000) J Phys Chem A 104:3287

    Article  CAS  Google Scholar 

  44. Tamura M, Gao D, Ueno A (2001) Chem Eur J 7:1390

    Article  CAS  Google Scholar 

  45. Kuciauskas D, Liddell PA, Lin S, Johnson TE, Weghorn SJ, Lindsey JS, Moore AL, Moore TA, Gust D (1999) J Am Chem Soc 121:8604

    Article  CAS  Google Scholar 

  46. Kodis G, Liddell PA, de la Garza L, Clausen PC, Lindsey JS, Moore AL, Moore TA, Gust D (2002) J Phys Chem A 106:2036

    Article  CAS  Google Scholar 

  47. Halim M, Samuel IDW, Pillow JNG, Burn PL (1999) Synthetic Met 102:1113

    Article  CAS  Google Scholar 

  48. Freeman AW, Koene SC, Malenfant PRL, Thompson ME, Frechet JMJ (2000) J Am Chem Soc 122:12385

    Article  CAS  Google Scholar 

  49. Anthopoulos TD, Markham JPJ, Namdas EB, Lawrence JR, Samuel IDW, Lo SC, Burn PL (2003) Org Electron 4:71

    Article  CAS  Google Scholar 

  50. Furuta P, Brooks J, Thompson ME, Frechet JMJ (2003) J Am Chem Soc 125:13165

    Article  CAS  Google Scholar 

  51. Stapert HR, Nishiyama N, Jiang DL, Aida T, Kataoka K (2000) Langmuir 16:8182

    Article  CAS  Google Scholar 

  52. Nishiyama N, Stapert HR, Zhang GD, Takasu D, Jiang DL, Nagano T, Aida T, Kataoka K (2003) Bioconjugate Chem 14:58

    Article  CAS  Google Scholar 

  53. Zhang GD, Harada A, Nishiyama N, Jiang DL, Koyama H, Aida T, Kataoka K (2003) J Control Release 93:141

    Article  CAS  Google Scholar 

  54. Aviram A (1988) J Am Chem Soc 110:5687

    Article  CAS  Google Scholar 

  55. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  Google Scholar 

  56. Yang ZQ, Lang ND, Di Ventra M (2003) Appl Phys Lett 82:1938

    Article  CAS  Google Scholar 

  57. Alvaro M, Chretien MN, Ferrer B, Fornes V, Garcia H, Scaiano JC (2001) Chem Commun, p 2106

    Google Scholar 

  58. Just EM, Wasielewski MR (2000) Superlattices Microstruct 28:317

    Article  CAS  Google Scholar 

  59. Sangu S, Kobayashi K, Shojiguchi A, Kawazoe T, Ohtsu M (2003) J Appl Phys 93:2937

    Article  CAS  Google Scholar 

  60. Wada O (2004) New J Phys 6:183

    Article  Google Scholar 

  61. Ham BS (2001) ETRI J 23:106

    Article  Google Scholar 

  62. Andrews DL, Crisp RG (2006) J Fluoresc 16:191

    Article  CAS  Google Scholar 

  63. Andrews DL, Crisp RG (2006) J Opt A Pure Appl Opt 8:S106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Andrews .

Editor information

M. N. Berberan-Santos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrews, D.L., Crisp, R.G. (2007). Principles of Directed Electronic Energy Transfer. In: Berberan-Santos, M.N. (eds) Fluorescence of Supermolecules, Polymers, and Nanosystems. Springer Series on Fluorescence, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2007_017

Download citation

Publish with us

Policies and ethics