Skip to main content

Resonance Energy Transfer in Polymer Interfaces

  • Chapter
  • First Online:
Book cover Fluorescence of Supermolecules, Polymers, and Nanosystems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 4))

Abstract

The properties of polymer materials are often determined by their interfaces. Polymer interfacesare usually much broader than inorganic interfaces, with values from 1 to 10 nm. This range matches thetypical length scale of Förster non-radiative resonance energy transfer (FRET). While the use of FRETin polymers was pioneered by Morawetz in the 1980s, the technique has only recently been extended to obtainquantitative detailed information on polymer interfaces and other nanostructured materials. A numberof systems with nanodomains and heterogeneous dye concentration profiles, ranging from block copolymer filmsand micelles, to polymer nanoparticles, latex film formation and polymer blends, have been successfullycharacterized by FRET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones RAL, Richards RW (1999) Polymers at Surfaces and Interfaces. Cambridge University Press, London, UK

    Google Scholar 

  2. Wool RP (1995) Polymer Interfaces: Structure and Strength. Carl Hanser Verlag, New York

    Google Scholar 

  3. Fleer GJ, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, London, UK

    Google Scholar 

  4. Forster T (1949) Experimentelle und Theoretische Untersuchung des Zwischenmolekularen Ubergangs Von Elektronenanregungsenergie. Z Naturforsch A 4:321–327

    Google Scholar 

  5. Forster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik Ber 2:55–75

    Article  CAS  Google Scholar 

  6. Morawetz H (1988) Studies of Synthetic-Polymers by Nonradiative Energy-Transfer. Science 240:172–176

    Article  CAS  Google Scholar 

  7. Mikes F, Morawetz H, Dennis KS (1984) Characterization of Polymer Compatibility by Nonradiative Energy-Transfer – Applications to Binary-Mixtures of Homopolymers and to Homopolymer Block Copolymer Blends. Macromolecules 17:60–63

    Article  CAS  Google Scholar 

  8. Mikes F, Morawetz H, Dennis KS (1980) Characterization of Polymer Compatibility by Nonradiative Energy-Transfer – Application to Binary-Mixtures Containing Anionically Prepared Polystyrene, Anionically Prepared Poly(Alpha-Methylstyrene), Or Poly(2,6-Dimethyl-1,4-Phenylene Ether). Macromolecules 13:969–971

    Article  CAS  Google Scholar 

  9. Horsky J, Morawetz H (1989) Fluorescence of Solutions of Mixed Donor-Labeled and Acceptor-Labeled Polymers. Macromolecules 22:1622–1624

    Article  CAS  Google Scholar 

  10. Amrani F, Hung JM, Morawetz H (1980) Studies of Polymer Compatibility by Nonradiative Energy-Transfer. Macromolecules 13:649–653

    Article  CAS  Google Scholar 

  11. Morawetz H, Amrani F (1978) New Method for Study of Polymer Compatibility. Macromolecules 11:281–282

    Article  CAS  Google Scholar 

  12. Morawetz H (1999) On the versatility of fluorescence techniques in polymer research. J Polym Sci A1 37:1725–1735

    Article  CAS  Google Scholar 

  13. Farinha JPS, Martinho JMG, Yekta A, Winnik MA (1995) Direct Nonradiative Energy-Transfer in Polymer Interphases – Fluorescence Decay Functions from Concentration Profiles Generated by Fickian Diffusion. Macromolecules 28:6084–6088

    Article  CAS  Google Scholar 

  14. Yekta A, Duhamel J, Winnik MA (1995) Dipole–Dipole Electronic-Energy Transfer – Fluorescence Decay Functions for Arbitrary Distributions of Donors and Acceptors – Systems with Planar Geometry. Chem Phys Lett 235:119–125

    Article  CAS  Google Scholar 

  15. Farinha JPS, Martinho JMG, Kawaguchi S, Yekta A, Winnik MA (1996) Latex film formation probed by nonradiative energy transfer: Effect of grafted and free poly(ethylene oxide) on a poly(n-butyl methacrylate) latex. J Phys Chem 100:12552–12558

    Article  CAS  Google Scholar 

  16. Farinha JPS, Martinho JMG (1997) Electronic energy transfer in restricted geometries – Application to the study of spherical and planar interphases of diblock copolymer films. J Lumin 72–74:914–917

    Article  Google Scholar 

  17. Yekta A, Winnik MA, Farinha JPS, Martinho JMG (1997) Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. 2. Systems with spherical symmetry. J Phys Chem A 101:1787–1792

    Article  CAS  Google Scholar 

  18. Farinha JPS, Spiro JG, Winnik MA (2004) Dipole–dipole electronic energy transfer: Fluorescence decay functions for arbitrary distributions of donors and acceptors in systems with cylindrical symmetry. J Phys Chem B 108:16392–16400

    Article  CAS  Google Scholar 

  19. Rubinstein M, Colby R (2003) Polymer Physics. Oxford University Press, New York

    Google Scholar 

  20. Bates FS (1991) Polymer–Polymer Phase-Behavior. Science 251:898–905

    Article  CAS  Google Scholar 

  21. Bucknall DG (2004) Influence of interfaces on thin polymer film behaviour. Prog Mater Sci 49:713–786

    Article  CAS  Google Scholar 

  22. Higgins JS, Tambasco M, Lipson JEG (2005) Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog Polym Sci 30:832–843

    Article  CAS  Google Scholar 

  23. Eastwood E, Viswanathan S, O'Brien CP, Kumar D, Dadmun MD (2005) Methods to improve the properties of polymer mixtures: Optimizing intermolecular interactions and compatibilization. Polymer 46:3957–3970

    Article  CAS  Google Scholar 

  24. Ma YC, Farinha JPS, Winnik MA, Yaneff PV, Ryntz RA (2004) Compatibility of chlorinated polyolefin with the components of thermoplastic polyolefin: A study by laser scanning confocal fluorescence microscopy. Macromolecules 37:6544–6552

    Article  CAS  Google Scholar 

  25. Bates FS, Fredrickson GH (1999) Block copolymers – Designer soft materials. Phys Today 52:32–38

    Article  CAS  Google Scholar 

  26. Fredrickson GH, Bates FS (1996) Dynamics of block copolymers: Theory and experiment. Annu Rev Mater Sci 26:501–550

    Article  CAS  Google Scholar 

  27. Reynolds BJ, Ruegg ML, Mates TE, Radke CJ, Balsara NP (2005) Experimental and theoretical study of the adsorption of a diblock copolymer to interfaces between two homopolymers. Macromolecules 38:3872–3882

    Article  CAS  Google Scholar 

  28. Thompson RB, Matsen MW (2000) Improving polymeric microemulsions with block copolymer polydispersity. Phys Rev Lett 85:670–673

    Article  CAS  Google Scholar 

  29. Bates FS, Maurer WW, Lipic PM, Hillmyer MA, Almdal K, Mortensen K, Fredrickson GH, Lodge TP (1997) Polymeric bicontinuous microemulsions. Phys Rev Lett 79:849–852

    Article  CAS  Google Scholar 

  30. Hamley IW (2004) Developments in Block Copolymers Science and Technology. Wiley Interscience, New York

    Book  Google Scholar 

  31. Lodge TP (2003) Block copolymers: Past successes and future challenges. Macromol Chem Phys 204:265–273

    Article  CAS  Google Scholar 

  32. Hamley IW (1998) The Physics of Block Copolymers. Oxford University Press, London, UK

    Google Scholar 

  33. Melenkevitz J, Muthukumar M (1991) Density Functional Theory of Lamellar Ordering in Diblock Copolymers. Macromolecules 24:4199–4205

    Article  CAS  Google Scholar 

  34. Leibler L (1980) Theory of Microphase Separation in Block Co-Polymers. Macromolecules 13:1602–1617

    Article  CAS  Google Scholar 

  35. Almdal K, Rosedale JH, Bates FS (1990) Order–Disorder Transition in Binary-Mixtures of Nearly Symmetrical Diblock Copolymers. Macromolecules 23:4336–4338

    Article  CAS  Google Scholar 

  36. Matsen MW, Bates FS (1996) Origins of complex self-assembly in block copolymers. Macromolecules 29:7641–7644

    Article  CAS  Google Scholar 

  37. Adhikari R, Michler GH (2004) Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Prog Polym Sci 29:949–986

    Article  CAS  Google Scholar 

  38. Helfand E (1975) Block Copolymers, Polymer-Polymer Interfaces, and Theory of Inhomogeneous Polymers. Accounts Chem Res 8:295–299

    Article  CAS  Google Scholar 

  39. Helfand E, Sapse AM (1975) Theory of Unsymmetric Polymer–Polymer Interfaces. J Chem Phys 62:1327–1331

    Article  CAS  Google Scholar 

  40. Helfand E, Wasserman ZR (1976) Block Copolymer Theory. 4. Narrow Interphase Approximation. Macromolecules 9:879–888

    Article  CAS  Google Scholar 

  41. Semenov AN (1985) Contribution to the Theory of Microphase Layering in Block-Copolymer Melts. Sov Phys JETP 61:733

    Google Scholar 

  42. Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098

    Article  CAS  Google Scholar 

  43. Matsen MW, Schick M (1996) Self-assembly of block copolymers. Curr Opin Colloid Interface Sci 1:329–336

    Article  Google Scholar 

  44. Helfand E, Tagami Y (1972) Theory of Interface Between Immiscible Polymers. 2. J Chem Phys 56:3592–3601

    Article  CAS  Google Scholar 

  45. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  46. Gast AP (1997) Polymeric micelles. Curr Opin Colloid Interface Sci 2:258–263

    Article  CAS  Google Scholar 

  47. Alexandridis P, Lindman B (2000) Amphiphilic Block Copolymers: Self-Assembly and Applications. Elsevier Science B.V., Amsterdan, The Netherlands

    Google Scholar 

  48. Zhang LF, Eisenberg A (1996) Multiple morphologies and characteristics of crew-cut micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 118:3168–3181

    Article  CAS  Google Scholar 

  49. Zhang LF, Eisenberg A (1995) Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers. Science 268:1728–1731

    Article  CAS  Google Scholar 

  50. Won YY, Davis HT, Bates FS (1999) Giant wormlike rubber micelles. Science 283:960–963

    Article  CAS  Google Scholar 

  51. Raez J, Barjovanu R, Massey JA, Winnik MA, Manners I (2000) Self-assembled organometallic block copolymer nanotubes. Angew Chem Int Edit 39:3862

    CAS  Google Scholar 

  52. Raez J, Manners I, Winnik MA (2002) Nanotubes from the self-assembly of asymmetric crystalline-coil poly(ferrocenylsilane-siloxane) block copolymers. J Am Chem Soc 124:10381–10395

    Article  CAS  Google Scholar 

  53. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: Tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  CAS  Google Scholar 

  54. Luo LB, Eisenberg A (2001) Thermodynamic size control of block copolymer vesicles in solution. Langmuir 17:6804–6811

    Article  CAS  Google Scholar 

  55. Sundberg DC, Durant YG (2003) Latex particle morphology, fundamental aspects: A review. Polym React Eng 11:379–432

    Article  CAS  Google Scholar 

  56. Durant YG, Sundberg DC (1997) Progress in predicting latex-particle morphology and projections for the future ACS SYMPOSIUM SERIES 663:44–56

    Google Scholar 

  57. Urban D, Takamura K (2002) Polymer Dispersions and Their Industrial Applications. Wiley-VCH, New York, USA

    Book  Google Scholar 

  58. Pichot C (2004) Surface-functionalized latexes for biotechnological applications. Curr Opin Colloid Interface Sci 9:213–221

    Article  CAS  Google Scholar 

  59. Chow RS, Takamura K (1988) Effects of Surface-Roughness (Hairiness) of Latex-Particles on Their Electrokinetic Potentials. J Colloid Interface Sci 125:226–236

    Article  CAS  Google Scholar 

  60. Farinha JPS, Charreyre MT, Martinho JMG, Winnik MA, Pichot C (2001) Picosecond fluorescence studies of the surface morphology of charged polystyrene latex particles. Langmuir 17:2617–2623

    Article  CAS  Google Scholar 

  61. Keddie JL (1997) Film formation of latex. Mater Sci Eng R 21:101–170

    Article  Google Scholar 

  62. Wang YC, Winnik MA (1993) Polymer Diffusion Across Interfaces in Latex Films. J Phys Chem 97:2507–2515

    Article  CAS  Google Scholar 

  63. Winnik MA, Wang YC, Haley F (1992) Latex Film Formation at the Molecular-Level – the Effect of Coalescing Aids on Polymer Diffusion. J Coating Technol 64:51–61

    CAS  Google Scholar 

  64. Wang YC, Zhao CL, Winnik MA (1991) Molecular-Diffusion and Latex Film Formation – An Analysis of Direct Nonradiative Energy-Transfer Experiments. J Chem Phys 95:2143–2153

    Article  CAS  Google Scholar 

  65. Hamley IW (2004) Developments in Block Copolymers: Science and Technology. Wiley Interscience, New York, USA

    Book  Google Scholar 

  66. Stamm M, Schubert DW (1995) Interfaces Between Incompatible Polymers. Annu Rev Mater Sci 25:325–356

    Article  CAS  Google Scholar 

  67. Schubert DW, Stamm M (1997) Neutron reflectometry and small-angle neutron scattering – Two complementary techniques for polymer blend investigations. Physica B 234:286–288

    Article  Google Scholar 

  68. Russell TP (1996) On the reflectivity of polymers: Neutrons and X-rays. Physica B 221:267–283

    Article  CAS  Google Scholar 

  69. Russell TP (1996) Characterizing polymer surfaces and interfaces. Mrs Bulletin 21:49–53

    CAS  Google Scholar 

  70. Sferrazza M, Xiao C, Jones RAL, Bucknall DG, Webster J, Penfold J (1997) Evidence for capillary waves at immiscible polymer/polymer interfaces. Phys Rev Lett 78:3693–3696

    Article  CAS  Google Scholar 

  71. Morawetz H (1983) Fluorescence Study of Polymer-Chain Interpenetration and of the Rate of Phase-Separation in Incompatible Polymer Blends. Polym Eng Sci 23:689–692

    Article  CAS  Google Scholar 

  72. Morawetz H (1979) Some Applications of Fluorimetry to Synthetic-Polymer Studies. Science 203:405–410

    Article  CAS  Google Scholar 

  73. Chen CT, Morawetz H (1989) Characterization of Polymer Miscibility by Fluorescence Techniques – Blends of Styrene Copolymers Carrying Hydrogen-Bond Donors with Polymethacrylates. Macromolecules 22:159–164

    Article  CAS  Google Scholar 

  74. Baumann J, Fayer MD (1986) Excitation Transfer in Disordered Two-Dimensional and Anisotropic 3-Dimensional Systems – Effects of Spatial Geometry on Time-Resolved Observables. J Chem Phys 85:4087–4107

    Article  CAS  Google Scholar 

  75. Steinber IZ (1968) Nonradiative Energy Transfer in Systems in Which Rotatory Brownian Motion Is Frozen. J Chem Phys 48:2411

    Article  Google Scholar 

  76. Steinber IZ, Hass E, Katchalsi E (1983) Long-Range Nonradiative Transfer of Electronic Excitation Energy. In: St. Andrews S (ed) Time-Resolved Spectroscopy in Biochemistry and Biology. Plenum, New York

    Google Scholar 

  77. Galanin MD (1955) The Problem of the Effect of Concentration on the Luminescence of Solutions. Sov Phys JETP 1:317–325

    Google Scholar 

  78. Forster T (1959) 10th Spiers Memorial Lecture – Transfer Mechanisms of Electronic Excitation. Discuss Faraday Soc 7–17

    Google Scholar 

  79. Klafter J, Blumen A (1984) Fractal Behavior in Trapping and Reaction. J Chem Phys 80:875–877

    Article  CAS  Google Scholar 

  80. Hauser M, Klein UKA, Gosele U (1976) Extension of Forsters Theory of Long-Range Energy-Transfer to Donor–Acceptor Pairs in Systems of Molecular Dimensions. Z Phys Chem 101:255–266

    Article  CAS  Google Scholar 

  81. Yang CL, Evesque P, Elsayed MA (1985) Fractal-Like, But Nonfractal, Behavior of One-Step Dipolar Energy-Transfer on Regular Lattices with Excluded Volume. J Phys Chem 89:3442–3444

    Article  CAS  Google Scholar 

  82. Levitz P, Drake JM, Klafter J (1989) In: Klafter J, Drake JM (eds) Molecular Dynamics in Restricted Geometries. Wiley, New York

    Google Scholar 

  83. Mataga N (1989) In: Klafter J, Drake JM (eds) Molecular Dynamics in Restricted Geometries. Wiley, New York

    Google Scholar 

  84. Farinha JPS, Schillen K, Winnik MA (1999) Interfaces in self-assembling diblock copolymer systems: Characterization of poly(isoprene-b-methyl methacrylate) micelles in acetonitrile. J Phys Chem B 103:2487–2495

    Article  CAS  Google Scholar 

  85. Gochanour CR, Andersen HC, Fayer MD (1979) Electronic Excited-State Transport in Solution. J Chem Phys 70:4254–4271

    Article  CAS  Google Scholar 

  86. Gochanour CR, Fayer MD (1981) Electronic Excited-State Transport in Random-Systems – Time-Resolved Fluorescence Depolarization Measurements. J Phys Chem 85:1989–1994

    Article  CAS  Google Scholar 

  87. Loring RF, Andersen HC, Fayer MD (1982) Electronic Excited-State Transport and Trapping in Solution. J Chem Phys 76:2015–2027

    Article  CAS  Google Scholar 

  88. Miller RJD, Pierre M, Fayer MD (1983) Electronic Excited-State Transport and Trapping in Disordered-Systems – Picosecond Fluorescence Mixing, Transient Grating, and Probe Pulse Experiments. J Chem Phys 78:5138–5146

    Article  CAS  Google Scholar 

  89. Klafter J, Blumen A, Drake JM (1989) In: Klafter J, Drake JM (eds) Molecular Dynamics in Restricted Geometries. Wiley, New York

    Google Scholar 

  90. Levitz P, Drake JM, Klafter J (1988) Direct Energy-Transfer in Pores – Geometrical Cross-Overs and Apparent Dimensionality. Chem Phys Lett 148:557–561

    Article  CAS  Google Scholar 

  91. Blumen A, Klafter J, Zumofen G (1986) Influence of Restricted Geometries on the Direct Energy-Transfer. J Chem Phys 84:1397–1401

    Article  CAS  Google Scholar 

  92. Levitz P, Drake JM, Klafter J (1988) Critical-Evaluation of the Application of Direct Energy-Transfer in Probing the Morphology of Porous Solids. J Chem Phys 89:5224–5236

    Article  CAS  Google Scholar 

  93. Martinho JMG, Farinha JP, Berberansantos MN, Duhamel J, Winnik MA (1992) Test of A Model for Reversible Excimer Kinetics – Pyrene in Cyclohexanol. J Chem Phys 96:8143–8149

    Article  CAS  Google Scholar 

  94. Bates FS, Fredrickson GH (1990) Block Copolymer Thermodynamics – Theory and Experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  95. Fredrickson GH, Helfand E (1987) Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers. J Chem Phys 87:697–705

    Article  CAS  Google Scholar 

  96. Torikai N, Noda I, Karim A, Satija SK, Han CC, Matsushita Y, Kawakatsu T (1997) Neutron reflection studies on segment distribution of block chains in lamellar microphase-separated structures. Macromolecules 30:2907–2914

    Article  CAS  Google Scholar 

  97. Sidorenko A, Tokarev I, Minko S, Stamm M (2003) Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J Am Chem Soc 125:12211–12216

    Article  CAS  Google Scholar 

  98. Pekcan O, Winnik MA, Croucher MD (1990) Energy-Transfer Studies on Polymer Membrane Films – Materials with Variable Apparent Dimensionality. Chem Phys 146:283–289

    Article  CAS  Google Scholar 

  99. Tcherkasskaya O, Ni SR, Winnik MA (1996) Effective volume per junction in block copolymer interfaces probed by direct energy transfer. Macromolecules 29:4241–4246

    Article  CAS  Google Scholar 

  100. Lamarche F, Leroy C (1990) Evaluation of the Volume of Intersection of A Sphere with A Cylinder by Elliptic Integrals. Comput Phys Communicat 59:359–369

    Article  CAS  Google Scholar 

  101. Paul D, Bucknall CB (2000) Polymer Blends. Wiley, New York

    Google Scholar 

  102. Fredrickson GH (1986) Intermolecular Correlation-Functions from Forster Energy-Transfer Experiments. Macromolecules 19:441–447

    Article  CAS  Google Scholar 

  103. Ni SR, Juhue D, Moselhy J, Wang YC, Winnik MA (1992) Energy-Transfer Studies of Donor–Acceptor-Labeled Polystyrene-Block-Poly(Methyl Methacrylate) Diblock Copolymers in Solution. Macromolecules 25:496–498

    Article  CAS  Google Scholar 

  104. Duhamel J, Yekta A, Ni S, Khaykin Y, Winnik MA (1993) Characterization of the Core of Polystyrene Block Poly(Methyl Methacrylate) Polymer Micelles by Energy-Transfer. Macromolecules 26:6255–6260

    Article  CAS  Google Scholar 

  105. Ni SR, Zhang P, Wang YC, Winnik MA (1994) Energy-Transfer Studies of the Boundary-Layer Interphase in Polystyrene Poly(Methyl Methacrylate) Block-Copolymer Films. Macromolecules 27:5742–5750

    Article  CAS  Google Scholar 

  106. Tcherkasskaya O, Spiro JG, Ni SR, Winnik MA (1996) Energy transfer in restricted geometry: Polyisoprene-poly(methyl methacrylate) block copolymer interfaces. J Phys Chem 100:7114–7121

    Article  CAS  Google Scholar 

  107. Tcherkasskaya O, Ni SR, Winnik MA (1996) Direct energy transfer studies of the domain-boundary interface in polyisoprene-poly(methyl methacrylate) block copolymer films. Macromolecules 29:610–616

    Article  CAS  Google Scholar 

  108. Hashimoto T, Shibayama M, Kawai H (1980) Domain-Boundary Structure of Styrene-Isoprene Block Co-Polymer Films Cast from Solution. 4. Molecular-Weight Dependence of Lamellar Microdomains. Macromolecules 13:1237–1247

    Article  CAS  Google Scholar 

  109. Hashimoto T, Fujimura M, Kawai H (1980) Domain-Boundary Structure of Styrene-Isoprene Block Co-Polymer Films Cast from Solutions. 5. Molecular-Weight Dependence of Spherical Microdomains. Macromolecules 13:1660–1669

    Article  CAS  Google Scholar 

  110. Yekta A, Spiro JG, Winnik MA (1998) A critical evaluation of direct energy transfer as a tool for analysis of nanoscale morphologies in polymers. Application to block copolymer interfaces. J Phys Chem B 102:7960–7970

    Article  CAS  Google Scholar 

  111. Farinha JPS, Spiro JG, Winnik MA (2001) Energy transfer in the restricted geometry of lamellar block copolymer interfaces. J Phys Chem B 105:4879–4888

    Article  CAS  Google Scholar 

  112. Rharbi Y, Winnik MA (2001) Interface thickness of a styrene-methyl methacrylate block copolymer in the lamella phase by direct nonradiative energy transfer. Macromolecules 34:5238–5248

    Article  CAS  Google Scholar 

  113. Yang J, Lu JP, Rharbi Y, Cao L, Winnik MA, Zhang YM, Wiesner UB (2003) Energy transfer study of the interface thickness in symmetrical isoprene-methyl methacrylate diblock copolymers. Macromolecules 36:4485–4491

    Article  CAS  Google Scholar 

  114. Yang J, Winnik MA, Pakula T (2005) Numerical simulations of fluorescence resonance energy transfer in diblock copolymer lamellae. Macromolecules 38:8882–8890

    Article  CAS  Google Scholar 

  115. Yang J, Roller RS, Winnik MA, Zhang Y, Pakula T (2005) Energy transfer study of symmetric polyisoprene-poly(methyl methacrylate) diblock copolymers bearing dyes at the junctions: Dye orientation. Macromolecules 38:1256–1263

    Article  CAS  Google Scholar 

  116. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1990) The Morphology of Symmetric Diblock Copolymers As Revealed by Neutron Reflectivity. J Chem Phys 92:5677–5691

    Article  CAS  Google Scholar 

  117. Russell TP, Menelle A, Hamilton WA, Smith GS, Satija SK, Majkrzak CF (1991) Width of Homopolymer Interfaces in the Presence of Symmetrical Diblock Copolymers. Macromolecules 24:5721–5726

    Article  CAS  Google Scholar 

  118. Schubert DW, Weidisch R, Stamm M, Michler GH (1998) Interface width of poly(styrene-b-butyl methacrylate) diblock copolymers. Macromolecules 31:3743–3745

    Article  CAS  Google Scholar 

  119. Karymov MA, Prochazka K, Mendenhall JM, Martin TJ, Munk P, Webber SE (1996) Chemical attachment of polystyrene-block-poly(methacrylic acid) micelles on a silicon nitride surface. Langmuir 12:4748–4753

    Article  CAS  Google Scholar 

  120. Kwon GS, Kataoka K (1995) Block-Copolymer Micelles As Long-Circulating Drug Vehicles. Adv Drug Deliv Rev 16:295–309

    Article  CAS  Google Scholar 

  121. Xu RL, Winnik MA, Riess G, Chu B, Croucher MD (1992) Micellization of Polystyrene Poly(Ethylene Oxide) Block Copolymers in Water. 5. A Test of the Star and Mean-Field Models. Macromolecules 25:644–652

    Article  CAS  Google Scholar 

  122. Tuzar Z, Kratochvil P (1993) In: Matijevic E (ed) Surface and Colloid Science. Plenum, New York

    Google Scholar 

  123. Riess G, Hurtrez G, Bahadur P (1985) In: Mark HF, Bikales NM, Overberg CG, Menges G (ed) Encyclopedia of Polymer Science and Engineering. Wiley, New York

    Google Scholar 

  124. Rager T, Meyer WH, Wegner G, Winnik MA (1997) Influence of chain length and salt concentration on block copolymer micellization. Macromolecules 30:4911–4919

    Article  CAS  Google Scholar 

  125. Webber SE (1998) Polymer micelles: An example of self-assembling polymers. J Phys Chem B 102:2618–2626

    Article  CAS  Google Scholar 

  126. Liu TB, Zhou ZK, Wu CH, Nace VM, Chu B (1998) Dominant factors on the micellization of BnEmBn-Type triblock copolymers in aqueous solution. J Phys Chem B 102:2875–2882

    Article  CAS  Google Scholar 

  127. Vagberg LJM, Cogan KA, Gast AP (1991) Light-Scattering Study of Starlike Polymeric Micelles. Macromolecules 24:1670–1677

    Article  CAS  Google Scholar 

  128. Farinha JPS, d'Oliveira JMR, Martinho JMG, Xu RL, Winnik MA (1998) Structure in tethered chains: Polymeric micelles and chains anchored on polystyrene latex spheres. Langmuir 14:2291–2296

    Article  CAS  Google Scholar 

  129. Glatter O, Scherf G, Schillen K, Brown W (1994) Characterization of A Poly(Ethylene Oxide) Poly(Propylene Oxide) Triblock Copolymer (Eo(27)-Po39-Eo(27)) in Aqueous-Solution. Macromolecules 27:6046–6054

    Article  CAS  Google Scholar 

  130. Jada A, Hurtrez G, Siffert B, Riess G (1996) Structure of polystyrene-block-poly(ethylene oxide) diblock copolymer micelles in water. Macromol Chem Phys 197:3697–3710

    Article  CAS  Google Scholar 

  131. Mortensen K, Brown W, Almdal K, Alami E, Jada A (1997) Structure of PS-PEO diblock copolymers in solution and the bulk state probed using dynamic light-scattering and small-angle neutron-scattering and dynamic mechanical measurements. Langmuir 13:3635–3645

    Article  CAS  Google Scholar 

  132. Goldmints I, von Gottberg FK, Smith KA, Hatton TA (1997) Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region. Langmuir 13:3659–3664

    Article  CAS  Google Scholar 

  133. Yu YS, Zhang LF, Eisenberg A (1998) Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules 31:1144–1154

    Article  CAS  Google Scholar 

  134. Schillen K, Yekta A, Ni SR, Winnik MA (1998) Characterization by fluorescence energy transfer of the core of polyisoprene-poly(methylmethacrylate) diblock copolymer micelles. Strong segregation in acetonitrile. Macromolecules 31:210–212

    Article  CAS  Google Scholar 

  135. Martin TJ, Webber SE (1995) Fluorescence studies of polymer micelles: Intracoil direct energy transfer. Macromolecules 28:8845–8854

    Article  CAS  Google Scholar 

  136. Phillips D, O'Connor DV (1984) Time Correlated Single Photon Counting. Academic, London

    Google Scholar 

  137. Farinha JPS, Martinho JMG, Pogliani L (1997) Non-linear least-squares and chemical kinetics. An improved method to analyse monomer-excimer decay data. J Math Chem 21:131–139

    Article  CAS  Google Scholar 

  138. Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  139. Schillen K, Yekta A, Ni SR, Farinha JPS, Winnik MA (1999) Characterization of polyisoprene-b-poly(methyl methacrylate) diblock copolymer micelles in acetonitrile. J Phys Chem B 103:9090–9103

    Article  CAS  Google Scholar 

  140. De Bruyn H, Gilbert RG, White JW, Schulz JC (2003) Characterization of electrosterically stabilized polystyrene latex; implications for radical entry kinetics. Polymer 44:4411–4420

    Article  CAS  Google Scholar 

  141. Said ZFM (1998) Possible evidence for the existence of a hairy layer at the surface of polymer latex particles. Polym Int 47:459–464

    Article  CAS  Google Scholar 

  142. Seebergh JE, Berg JC (1995) Evidence of A Hairy Layer at the Surface of Polystyrene Latex-Particles. Colloid Surface A 100:139–153

    Article  CAS  Google Scholar 

  143. Vanderput AG, Bijsterbosch BH (1983) Electrokinetic Measurements on Concentrated Polystyrene Dispersions and Their Theoretical Interpretation. J Colloid Interface Sci 92:499–507

    Article  CAS  Google Scholar 

  144. Chow RS, Takamura K (1988) Effects of Surface-Roughness (Hairiness) of Latex-Particles on Their Electrokinetic Potentials. J Colloid Interface Sci 125:226–236

    Article  CAS  Google Scholar 

  145. Rosen LA, Saville DA (1990) The Dielectric Response of Polystyrene Latexes – Effects of Alterations in the Structure of the Particle Surface. J Colloid Interface Sci 140:82–92

    Article  CAS  Google Scholar 

  146. Obrien RW, White LR (1978) Electrophoretic Mobility of A Spherical Colloidal Particle. J Chem Soc Faraday Trans Ii 74:1607–1626

    Google Scholar 

  147. Delacey EHB, White LR (1981) Dielectric Response and Conductivity of Dilute Suspensions of Colloidal Particles. J Chem Soc Faraday Trans Ii 77:2007–2039

    Google Scholar 

  148. Nakashima K, Liu YS, Zhang P, Duhamel J, Feng JR, Winnik MA (1993) Picosecond Fluorescence Studies of Energy-Transfer on the Surface of Poly(Butyl Methacrylate) Latex-Particles. Langmuir 9:2825–2831

    Article  CAS  Google Scholar 

  149. Nakashima K, Duhamel J, Winnik MA (1993) Photophysical Processes on A Latex Surface – Electronic-Energy Transfer from Rhodamine Dyes to Malachite Green. J Phys Chem 97:10702–10707

    Article  CAS  Google Scholar 

  150. Farinha JPS, Charreyre MT, Martinho JMG, Winnik MA, Pichot C (2001) Picosecond fluorescence studies of the surface morphology of charged polystyrene latex particles. Langmuir 17:2617–2623

    Article  CAS  Google Scholar 

  151. Eckersley ST, Rudin A (1990) Mechanism of Film Formation from Polymer Latexes. J Coating Technol 62:89–100

    CAS  Google Scholar 

  152. Hahn K, Ley G, Oberthur R (1988) On Particle Coalescence in Latex Films(Ii). Colloid Polym Sci 266:631–639

    Article  CAS  Google Scholar 

  153. Hahn K, Ley G, Schuller H, Oberthur R (1986) On Particle Coalescence in Latex Films. Colloid Polym Sci 264:1092–1096

    Article  CAS  Google Scholar 

  154. Yoo JN, Sperling LH, Glinka CJ, Klein A (1991) Characterization of Film Formation from Polystyrene Latex-Particles Via Sans. 2. High-Molecular-Weight. Macromolecules 24:2868–2876

    Article  CAS  Google Scholar 

  155. Yoo JN, Sperling LH, Glinka CJ, Klein A (1990) Characterization of Film Formation from Polystyrene Latex-Particles Via Sans. 1. Moderate Molecular-Weight. Macromolecules 23:3962–3967

    Article  CAS  Google Scholar 

  156. Ye XD, Farinha JPS, Oh JK, Winnik MA, Wu C (2003) Polymer diffusion in PBMA latex films using a polymerizable benzophenone derivative as an energy transfer acceptor. Macromolecules 36:8749–8760

    Article  CAS  Google Scholar 

  157. Farinha JPS, Wu J, Winnik MA, Farwaha R, Rademacher J (2005) Polymer diffusion in gel-containing poly(vinyl acetate-co-dibutyl maleate) latex films. Macromolecules 38:4393–4402

    Article  CAS  Google Scholar 

  158. Pham HH, Farinha JPS, Winnik MA (2000) Cross-linking, miscibility, and interface structure in blends of poly(2-ethylhexyl methacrylate) copolymers. An energy transfer study. Macromolecules 33:5850–5862

    Article  CAS  Google Scholar 

  159. Krause S, Goh SH (1999) In: Brandrup J, Immergut EH, Gruke E (ed) Polymer Handbook. Wiley, New York

    Google Scholar 

  160. Zhou XL, Chen SH (1995) Theoretical Foundation of X-Ray and Neutron Reflectometry. Phys Rep 257:223–348

    Article  CAS  Google Scholar 

  161. Geoghegan M, Jones RAL, Sivia DS, Penfold J, Clough AS (1996) Experimental study of surface segregation and wetting in films of a partially miscible polymer blend. Phys Rev E 53:825–837

    Article  CAS  Google Scholar 

  162. Bucknall DG, Butler SA, Higgins JS (1999) Neutron reflectivity of polymer interfaces. J Phys Chem Solids 60:1273–1277

    Article  CAS  Google Scholar 

  163. Foster MD (1993) X-Ray-Scattering Methods for the Study of Polymer Interfaces. Crit Rev Anal Chem 24:179–241

    Article  CAS  Google Scholar 

  164. Tan SS, Zhang DH, Zhou EL (1997) SAXS measurements of the interface in polyacrylate and epoxy interpenetrating networks with fractal geometry. Polymer 38:4571–4575

    Article  CAS  Google Scholar 

  165. Wlochowicz A, Janicki J, Slusarczyk C (1997) Determination of the transition region thickness in polymer blends by the SAXS method. Compos Interface 5:1–9

    Article  CAS  Google Scholar 

  166. Spiro JG, Farinha JPS, Winnik MA (2003) Thermodynamics and morphology of latex blend films. Macromolecules 36:7791–7802

    Article  CAS  Google Scholar 

  167. Feng JR, Winnik MA (1997) Effect of water on polymer diffusion in latex films. Macromolecules 30:4324–4331

    Article  CAS  Google Scholar 

  168. Farinha JPS, Vorobyova O, Winnik MA (2000) An energy tranfer study of the interface thickness in blends of poly(butyl methacrylate) and poly(2-ethylhexyl methacrylate). Macromolecules 33:5863–5873

    Article  CAS  Google Scholar 

  169. Anastasiadis SH, Gancarz I, Koberstein JT (1988) Interfacial-Tension of Immiscible Polymer Blends – Temperature and Molecular-Weight Dependence. Macromolecules 21:2980–2987

    Article  CAS  Google Scholar 

  170. Cahn JW, Hilliard JE (1958) Free Energy of A Nonuniform System. 1. Interfacial Free Energy. J Chem Phys 28:258–267

    Article  CAS  Google Scholar 

  171. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  172. de Gennes PG (1980) Dynamics of Fluctuations and Spinodal Decomposition in Polymer Blends. J Chem Phys 72:4756–4763

    Article  Google Scholar 

  173. Muller M, Binder K, Oed W (1995) Structural and Thermodynamic Properties of Interfaces Between Coexisting Phases in Polymer Blends – A Monte Carlo Simulation. J Chem Soc Faraday Trans 91:2369–2379

    Article  Google Scholar 

  174. Ermoshkin AV, Semenov AN (1996) Interfacial tension in binary polymer mixtures. Macromolecules 29:6294–6300

    Article  CAS  Google Scholar 

  175. Semenov AN (1994) Scattering of Statistical Structure of Polymer–Polymer Interfaces. Macromolecules 27:2732–2735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. S. Farinha or J. M. G. Martinho .

Editor information

M. N. Berberan-Santos

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farinha, J.P.S., Martinho, J.M.G. (2007). Resonance Energy Transfer in Polymer Interfaces. In: Berberan-Santos, M.N. (eds) Fluorescence of Supermolecules, Polymers, and Nanosystems. Springer Series on Fluorescence, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4243_2007_005

Download citation

Publish with us

Policies and ethics