Skip to main content

Treatment Options in Patients with Prion Disease - the Role of Long Term Cerebroventricular Infusion of Pentosan Polysulphate

  • Conference paper
Prions

Summary

Prion diseases (PrD), also known as transmissible spongiform encephalopathies, are believed to be caused by accumulation of an abnormal isoform of the prion protein (PrPSC) in the central nervous system. Creutzfeld-Jacob disease (CJD) in its sporadic and variant form is the most frequent and clinically important PrD. At present there is no proven specific or effective treatment available for any form of CJD, although some oral agents, such as quinacrine or flupirtine, are being investigated in clinical trials.

Pentosan polysulphate (PPS), a large polyglycoside molecule with weak heparin-like activity, has been shown to prolong the incubation period of PrPSC infection when administered to the cerebral ventricles in a rodent scrapie model. PPS also prevents the production of further PrPSC in cell culture models. However, PPS penetrates poorly the blood-brain barrier and only a minor fraction of orally administered drug may reach the CNS. These properties of PPS prompted its cerebroventricular administration in patients with vCJD and other PrD, such as iatrogenic CJD and Gerstmann-Sträussler-Scheinker syndrome (GSS). Long-term continuous infusion of PPS at doses of up to 110 µg/kg/d did not cause serious drug-related side effects. Follow-up CT and MRI imaging demonstrated that brain atrophy may progress further during PPS administration, while the neurological status may remain stable. Proof of clinical efficacy has not been the aim of the current clinical studies of PPS, however one patient with vCJD survived for 23 months after initial symptoms and 39 months after diagnosis, while the median duration of illness with vCJD is 13 months (range 6–39).

Some lessons have been learned from the early studies of application of PPS in PrD patients. Surgery in a brain affected by PrD may result in a higher rate of surgical complications than might be expected in analogous cases with other conditions. Secondly, efficacy of PPS or any other treatment option in advanced PrD cases will be very difficult to assess, due to the lack of specific and objective criteria for measurement of response. Overall survival may remain therefore one of the few objective ways of assessing outcome in treated patients. Finally, if clinically significant benefits to patients are to be expected, PPS administration should start as early as possible in the course of the respective disease and before irreversible loss of neurological function has occurred. Further clinical, neuroradiological and laboratory investigations of cerebroventricular PPS administration in the setting of a prospective clinical study will be essential for the assessment of possible clinical benefits of PPS in PrD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prusiner SB (1994) Biology and genetics of prion diseases. Annu Rev Microbiol 48:655–686

    Article  PubMed  CAS  Google Scholar 

  2. Vorberg I, Priola SA (2002) Molecular basis of scrapie strain glycoform variation. J Biol Chem 277: 36775–36781

    Article  PubMed  CAS  Google Scholar 

  3. Harris DA (2001) Biosynthesis and cellular processing of the prion protein. Adv Protein Chem 57:203–228

    Article  PubMed  CAS  Google Scholar 

  4. Dormont D (2002) Prions, BSE and food. Int J Food Microbiol 78:181–189

    Article  PubMed  CAS  Google Scholar 

  5. Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73:1105–1113

    Article  PubMed  CAS  Google Scholar 

  6. Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Article  PubMed  CAS  Google Scholar 

  7. Weissmann C, Bueler H, Fischer M, Sailer A, Aguzzi A, Aguet M (1994) PrP-deficient mice are resistant to scrapie. Ann NY Acad Sci 724:235–240

    PubMed  CAS  Google Scholar 

  8. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  9. Weissmann C, Raeber AJ, Montrasio F, Hegyi I, Frigg R, Klein MA, Aguzzi A (2001) Prions and the lymphoreticular system. Philos Trans R Soc Lond B Biol Sci 356:177–184

    Article  PubMed  CAS  Google Scholar 

  10. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343

    Article  PubMed  CAS  Google Scholar 

  11. Clarke AR, Jackson GS, Collinge J (2001) The molecular biology of prion propagation. Philos Trans R Soc Lond B Biol Sci 356:185–195

    Article  PubMed  CAS  Google Scholar 

  12. Caughey B (2003) Prion protein conversions: insight into mechanisms, TSE transmission barriers and strains. Brit Med Bull 66:109–120

    Article  PubMed  CAS  Google Scholar 

  13. Come JH, Fraser PE, Lansbury PT Jr (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 905959–5963

    Google Scholar 

  14. Cohen FE, Pan KM, Huang Z, Baldwin M, Fletterick RJ, Prusiner SB (1994) Structural clues to prion replication. Science 264:530–531

    PubMed  CAS  Google Scholar 

  15. Huang Z, Prusiner SB, Cohen FE (1996) Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des 1:13–19

    Article  PubMed  CAS  Google Scholar 

  16. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425:717–720

    Article  PubMed  CAS  Google Scholar 

  17. Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host protein in neurotoxicity of a prion protein fragment. Nature 380:345–347

    Article  PubMed  CAS  Google Scholar 

  18. Brown DR, Kretzschmar HA (1997) Microglia and prion disease: a review. Histol Histopathol 12:883–992

    PubMed  CAS  Google Scholar 

  19. Aguzzi A, Klein MA, Musahl C, Raeber AJ, Blattler T, Hegyi I, Frigg R, Brandner S (1998) Use of brain grafts to study the pathogenesis of prion diseases. Assays Biochem 33:133–147

    CAS  Google Scholar 

  20. Rezaie P, Lantos PL (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res Brain Res Rev 3555–72

    Google Scholar 

  21. Brown DR (1999) Prion protein peptide neurotoxicity can be mediated by astrocytes. J Neurochem 73:1105–1113

    Article  PubMed  CAS  Google Scholar 

  22. Raeber AJ, Race RE, Brandner S, Priola SA, Sailer A, Bessen RA, Mucke L, Manson J, Aguzzi A, Oldstone MB, Weissmann C, Chesebro B (1997) Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie. EMBO J 16:6057–6065

    Article  PubMed  CAS  Google Scholar 

  23. Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathology 8:449–457

    Article  PubMed  CAS  Google Scholar 

  24. Heppner FL, Aguzzi A. Prion Diseases. In: Nature Encyclopedia of Life Sciences. London: Nature Publishing Group. http://www.els.net/ [doi:10.1038/npg.els.0000428]

    Google Scholar 

  25. Kubler E, Oesch B, Raeber AJ (2003) Diagnosis of prion diseases. Br Med Bull 66:267–279

    Article  PubMed  Google Scholar 

  26. Knight R (1998) Creutzfeldt-Jakob disease: clinical features, epidemiology and tests. Electrophoresis 19:1306–13010

    Article  PubMed  CAS  Google Scholar 

  27. Gambetti P, Parchi P, Petersen RB, Chen SG, Lugaresi E (1995) Fatal familial insomnia and familial Creutzfeldt-Jakob disease: clinical, pathological and molecular features. Brain Pathol 5:43–51

    PubMed  CAS  Google Scholar 

  28. Brown P, Preece M, Brandel JP, Sato T, McShane L, Zen I, Fletcher A, Will RG, Pocchiari M, Cashman NR, d’Aignaux JH, Cervenakova L, Fradkin J, Schonberger LB, Collins SJ (2000) Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 55: 1075–1081

    PubMed  CAS  Google Scholar 

  29. Smith PG (2003) The epidemics of bovine spongiform encephalopathy and variant CJD; current status and future prospects. Bull World Health Organ 81,123–130

    PubMed  Google Scholar 

  30. Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, Xue R, Leal S, Montagna P, Cortelli P (1992) Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med 326:444–449

    Article  PubMed  CAS  Google Scholar 

  31. Fiorino AS (1996) Sleep, genes and death: fatal familial insomnia. Brain Res Brain Res Rev 22:258–264

    Article  PubMed  CAS  Google Scholar 

  32. Larner AJ, Doran M (2003) Prion diseases: update on therapeutic patents (1999-2002). Exp Opinion Ther Pat 13:67–78

    Article  CAS  Google Scholar 

  33. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 347:921–925

    Article  PubMed  CAS  Google Scholar 

  34. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ (1997) Transmission to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501

    Article  PubMed  CAS  Google Scholar 

  35. Weissmann C, Aguzzi A (1997) Bovine spongiform encephalopathy and early onset variant Creutzfeldt-Jakob disease. Curr Opinion Neurobiol 7:695–700

    Article  CAS  Google Scholar 

  36. Ironside JW (2000) Pathology of variant Creutzfeldt-Jakob disease. Arch Virol Suppl 16:143–151

    PubMed  Google Scholar 

  37. Spencer MD, Knight RSG, Will RG (2002) First hundred cases of variant Creutzfeldt. Jakob disease: retrospective case note review of early psychiatric and neurological features. Br Med J 324:1479–1482

    Google Scholar 

  38. Wadsworth JD, Hill AF, Beck JA, Collinge J (2003) Molecular and clinical classification of human prion disease. Br Med Bull 66:241–254

    Article  PubMed  CAS  Google Scholar 

  39. Müller WEG, Laplanche JL, Ushijima H, Schroder HC (2000) Novel approaches in diagnosis and therapy of Creutzfeldt Jakob disease. Mechanisms of Ageing and Development 16:193–218

    Article  Google Scholar 

  40. Head MW, Ironside JW (2000) Inhibition of prion-protein conversion: a therapeutic tool? Trends Microbiol 8:6–8.

    Article  PubMed  CAS  Google Scholar 

  41. Love R (2001) Old drugs to treat new variant Creutzfeldt-Jakob disease. Lancet 358:563

    Article  PubMed  CAS  Google Scholar 

  42. Gilch S, Schatzl HM (2003) Promising developments bringing prion diseases closer to therapy and prophylaxis. Trends Mol Med 9:367–369

    Article  PubMed  CAS  Google Scholar 

  43. Rossi G, Salmona M, Forloni G, Bugiani O, Tagliavini F (2003) Therapeutic approaches to prion diseases. Clin Lab Med 23:187–208

    Article  PubMed  Google Scholar 

  44. McKenzie D, Kaczkowski J, Marsh R, Aiken J (1994) Amphotericin B delays both scrapie agent replication and PrP-res accumulation early in infection. J Virol 68:7534–7536

    PubMed  CAS  Google Scholar 

  45. Demaimay R, Race R, Chesebro B (1999) Effectiveness of polyene antibiotics in treatment of transmissible spongiform encephalopathy in transgenic mice expressing Syrian hamster PrP only in neurons. J Virol 73:3511–3513

    PubMed  CAS  Google Scholar 

  46. Adjou KT, Demaimay R, Deslys JP, Lasmezas CI, Beringue V, Demart, S., Lamoury F, Seman M, Dormont D (1999) MS-8209, a water-soluble amphotericin B derivative, affects both scrapie agent replication and PrPres accumulation in Syrian hamster scrapie. J Gen Virol 80:1079–1085

    PubMed  CAS  Google Scholar 

  47. Caughey B, Race RE (1992) Potent inhibition of scrapie associated PrP accumulation by Congo Red. J Neurochem 59:768–771

    PubMed  CAS  Google Scholar 

  48. Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R (1998) The anti-prion activity of Congo red. Putative mechanism. J Biol Chem 273:3484–3489

    Article  PubMed  CAS  Google Scholar 

  49. Tagliavini F, McArthur RA, Canciani B, Giaccone G, Porro M, Bugiani M, Lievens PM, Bugiani O, Peri E, Dall’Ara P, Rocchi M, Poli G, Forloni G, Bandiera T, Varasi M, Suarato A, Cassutti P, Cervini MA, Lansen J, Salmona M, Post C (1997) Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 276:1119–1122

    Article  PubMed  CAS  Google Scholar 

  50. Manuelidis L, Fritch W, Zaitsev I (1998) Dapsone to delay symptoms in Creutzfeldt-Jakob disease. Lancet 352:456

    Article  PubMed  CAS  Google Scholar 

  51. Guenther K, Deacon RM, Perry VH, Rawlins JN (2001) Early behavioural changes in scrapie-affected mice and the influence of dapsone. Eur J Neurosci 14:401–409

    Article  PubMed  CAS  Google Scholar 

  52. Shyng SL, Lehmann S, Moulder K, Harris D (1995) Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein PrPc in cultured cells. J Biol Chem 270:30221–30229

    Article  PubMed  CAS  Google Scholar 

  53. Priola SA, Raines A, Caughey WS (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287:1503–1506

    Article  PubMed  CAS  Google Scholar 

  54. Perovic S, Pergande G, Ushijima H, Kelve M, Forrest J, Muller WE (1995) Flupirtine partially prevents neuronal injury induced by prion protein fragment and lead acetate. Neurodegeneration 4:369–374

    Article  PubMed  CAS  Google Scholar 

  55. Perovic S, Schleger C, Pergande G, Iskric S, Ushijima H, Rytik P, Muller WE (1994) The triaminopyridine flupirtine prevents cell death in rat cortical cells induced by N-methyl-D-aspartate and gp120 of HIV-1. Eur J Pharmacol 288:27–33

    Article  PubMed  CAS  Google Scholar 

  56. Otto M, Cepek L, Ratzka P, Doehlinger S, Boekhoff I, Wiltfang J, Irle E, Pergande G, Ellers-Lenz B, Windl O, Kretzschmar HA, Poser S, Prange H (2004) Efficacy of flupirtine on cognitive function in patients with CJD: A double-blind study. Neurology 62:714–718

    PubMed  CAS  Google Scholar 

  57. Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA 98,9295–9299

    Article  PubMed  CAS  Google Scholar 

  58. Sigurdsson EM, Brown DR, Daniels M, Kascsak RJ, Kascsak R, Carp R, Meeker HC, Frangione B, Wisniewski T (2002) Immunization delays the onset of prion disease in mice. Am J Pathol 161:13–17

    PubMed  CAS  Google Scholar 

  59. Gilch S, Wopfner F, Renner-Muller I, Kremmer E, Bauer C, Wolf E, Brem G, Groschup MH, Schatzl HM (2003) Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J Biol Chem 278:18524–185231

    Article  PubMed  CAS  Google Scholar 

  60. Heppner FL, Musahl C, Arrighi I, Klein MA, Rulicke T, Oesch B, Zinkernagel RM, Kalinke U, Aguzzi A (2001) Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science 294:178–182

    Article  PubMed  CAS  Google Scholar 

  61. Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412:739–743

    Article  PubMed  CAS  Google Scholar 

  62. White AR, Enever P, Tayebi M, Mushens R, Linehan J, Brandner S, Anstee D, Collinge J, Hawke S (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422:80–83

    Article  PubMed  CAS  Google Scholar 

  63. Doh-Ura K, Iwaki T, Caughey B (2000) Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74:4894–4897

    Article  PubMed  CAS  Google Scholar 

  64. Korth C, May BC, Cohen FE, Prusiner SB (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 98:9836–9841

    Article  PubMed  CAS  Google Scholar 

  65. Turnbull S, Tabner BJ, Brown DR, Allsop D (2003) Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106–126. Neuroreport 14:1743–1745

    Article  PubMed  CAS  Google Scholar 

  66. Collins SJ, Lewis V, Brazier M, Hill AF, Fletcher A, Masters CL (2002) Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 52:503–506

    Article  PubMed  CAS  Google Scholar 

  67. Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, Colombo L, De Luigi A, Limido L, Suardi S, Rossi G, Auvre F, Adjou KT, Sales N, Williams A, Lasmezas C, Deslys JP (2003) Evaluation of quinacrine treatment for prion diseases. J Virol 77:8462–8469

    Article  PubMed  CAS  Google Scholar 

  68. Nakajima M, Yamada T, Kusuhara T, Furukawa H, Takahashi M, Yamauchi A, Kataoka Y (2004) Results of quinacrine administration to patients with Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 17:158–163

    Article  PubMed  CAS  Google Scholar 

  69. http://www.ctu.mrc.ac.uk/studies/cjd.asp

    Google Scholar 

  70. Diringer H, Ehlers B (1991) Chemoprophylaxis of scrapie in mice. J Gen Virol 782:457–460

    Google Scholar 

  71. Caughey B (1994) Protease-resistant PrP accumulation and scrapie agent replication: a role for sulphated glycosoaminoglycans? Biochem Neurodegen Disord 22:163–167

    CAS  Google Scholar 

  72. Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W (1994) Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. J Virol 68:2135–2141

    PubMed  CAS  Google Scholar 

  73. Caughey B, Raymond G (1993) Sulfated polyanion inhibition of scrapie associated PrP accumulation in cultured cells. J Virol 67:643–650

    PubMed  CAS  Google Scholar 

  74. Perez M, Wandosell F, Colaco C, Avila J (1998) Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochem J 335:369–374

    PubMed  CAS  Google Scholar 

  75. Farquhar C, Dickinson A (1986) Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before of after infection. J Gen Virol 67:463–473

    Article  PubMed  CAS  Google Scholar 

  76. Ehlers B, Diringer H (1984) Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol 65:1325–1330

    PubMed  CAS  Google Scholar 

  77. Kimberlin RH, Walker CA (1988) Pathogenesis of experimental scrapie. Ciba Found Symp 135:37–62

    PubMed  CAS  Google Scholar 

  78. Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, Masullo C, Pocchiari M (1992) Sulphate polyanions prolong the incubation period of scrapie infected hamsters. J Gen Virol 73:661–665

    PubMed  CAS  Google Scholar 

  79. Farquhar C, Dickinson A, Bruce M (1999) Prophylactic potential of pentosan polysulphate in transmissible spongiform encephalopathies. Lancet 353:117

    Article  PubMed  CAS  Google Scholar 

  80. Doh-ura K, Ishikawa K, Murakami-Kubo I, Sasaki K, Mohri S, Race R, Iwaki T (2004) Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol 78:4999–5006

    Article  PubMed  CAS  Google Scholar 

  81. Dawes J, Prowse CV, Pepper DS (1986) Absorption of heparin, LMW heparin and SP54 after subcutaneous injection, assessed by competitive binding assay. Thromb Res 44:683–693

    Article  PubMed  CAS  Google Scholar 

  82. Dawes J, Pepper DS (1992) Human vascular endothelial cells catabolise exogenous glycosaminoglycans by a novel route. Thromb Haemost 67:468–472

    PubMed  CAS  Google Scholar 

  83. McGregor IR, Dawes J, Pepper DS (1985) Metabolism of sodium pentosan polysulphate in man measured by a new competitive binding assay for sulphated polysaccharides-comparison with effects upon anticoagulant activity, lipolysis and platelet A-granule proteins. Thromb Haemost 53:411–414

    Google Scholar 

  84. Sie P, Albarede JL, Robert M, Bouloux C, Lansen J, Chigot C, Correll S, Thouvenot JP, Boneu B (1986) Tolerance and biological activity of pentosan polysulphate after intramuscular or subcutaneous administration for ten days in human volunteers. Thromb Haemost 55:86–89

    PubMed  CAS  Google Scholar 

  85. Mulholland SG, Hanno P, Parsons CL, Sant GR, Staskin DR (1990) Pentosan polysulfate sodium for therapy of interstitial cystitis. A double-blind placebo-controlled clinical study. Urology 35:552–558

    Article  PubMed  CAS  Google Scholar 

  86. Tardy-Poncet B, Tardy B, Grelac F, Reynaud J, Mismetti P, Bertrand JC, Guyotat D (1994) Pentosan polysulfate induced thrombocytopaenia and thrombosis. Am J Haematol 45:252–257

    CAS  Google Scholar 

  87. Emmett CJ, Stewart GR, Johnson RM, Aswani SP, Chan RL, Jakeman LB (1996) Distribution of radioiodinated recombinant human nerve growth factor in primate brain following intracerebroventricular infusion. Exp Neurol 140:151–160

    Article  PubMed  CAS  Google Scholar 

  88. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9589–595

    Google Scholar 

  89. Cornford EM (1985) The blood-brain barrier, a dynamic regulatory interface. Mol Physiol 7:219–260

    CAS  Google Scholar 

  90. Neuwelt EA (2004) Mechanisms of disease: the blood-brain barrier. Neurosurgery 54:131–142

    Article  PubMed  Google Scholar 

  91. Kroll RA, Neuwelt EA (1998) Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1100

    Article  PubMed  CAS  Google Scholar 

  92. Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30:415–423

    Article  PubMed  Google Scholar 

  93. Pakulski C, Dybkowska K, Drobnik L (1998) [Brain barriers. Part II. Blood/cerebrospinal fluid barrier and cerebrospinal fluid brain tissue barrier]. Neurol Neurochir Pol 32:133–139

    PubMed  CAS  Google Scholar 

  94. Fossan G, Cavanagh ME, Evans CA, Malinowska DH, Mollgard K, Reynolds ML, Saunders NR (1985) CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. Brain Res 350:113–124

    PubMed  CAS  Google Scholar 

  95. Czosnyka M, Czosnyka Z, Momjian S, Pickard JD (2004) Cerebrospinal fluid dynamics. Physiol Meas 25:R51–76

    Article  PubMed  Google Scholar 

  96. Fenstermacher JD, Ghersi-Egea JF, Finnegan W, Chen JL (1997) The rapid flow of cerebrospinal fluid from ventricles to cisterns via subarachnoid velae in the normal rat. Acta Neurochir Suppl 70:285–287

    PubMed  CAS  Google Scholar 

  97. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  PubMed  CAS  Google Scholar 

  98. Todd NV, Morrow J, Doh-ura K, Dealler S, O’Hare S, Farling P, Duddy M, Rainov NG (2004) Cerebroventricular infusion of pentosan polysulphate in human variant Creutzfeldt-Jakob disease. J Infect-in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Tokyo

About this paper

Cite this paper

Rainov, N.G., Whittle, I.R., Doh-ura, K. (2005). Treatment Options in Patients with Prion Disease - the Role of Long Term Cerebroventricular Infusion of Pentosan Polysulphate. In: Kitamoto, T. (eds) Prions. Springer, Tokyo. https://doi.org/10.1007/4-431-29402-3_4

Download citation

  • DOI: https://doi.org/10.1007/4-431-29402-3_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-25539-0

  • Online ISBN: 978-4-431-29402-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics